2021幎12æ24æ¥ãéè¶èåææã®ããŒã ã¯ãäžæµ·ã®éŠè§æ¥Œã§2021幎ã®å¹Žæ«ã®éãŸããéå¬ããŸããããã®éãå çã¯èªåã®åŠçæä»£ã®çµéšãèªããä»åŸã®çºå±ã«ã€ããŠã¢ããã€ã¹ãããŸããããŸãã忥ããŠåž°ã£ãŠããæå°éŸå 茩ã¯ãä»äºã®çµéšãå ±æããŸãããæåŸã«ãäºãã«ç¥çŠããããªãããé£äºäŒãçµããŸããã
2021幎12æ14-16æ¥ïŒã第äºå±ææåºå å·¥çšé«å±è®ºåããæ²³åçã®éå·ã§éå¬ãããŸãããéè¶èå çã¯16æ¥ã®ååŸããã³ã³ãã¥ãŒã¿ããžã§ã³ã«åºã¥ãææç»ååŠçæ¹æ³ãã«ã€ããŠå ±åããææç»åããŒã¿ã®æœåºæ¹æ³ã«ã€ããŠèª¬æããŸãããææããŒã¿ã¯ææã²ãã ããã°ã©ã ã®ç©è³ªçåºç€ã§ãããæ§ã ãªææç ç©¶ã«é¢é£ããããŒã¿ããŒã¹ã®æ§ç¯ãæ¯æŽããããšãã§ããŸãããŸãã人工ç¥èœãã埮èŠçæ§é ãã補é å·¥çšãããã¯ãæ§èœããšã®é¢ä¿ãçè§£ããã®ã«éèŠãªåœ¹å²ãæãããŸããææããŒã¿ã«ã¯ãèšç®ããŒã¿ãå®éšããŒã¿ãçç£ããŒã¿ãæç®ããŒã¿ãå«ãŸããŸããããããã®ããŒã¿ã«ã¯ãã°ãã°å€§éã®ç»åãå«ãŸããŠããããããã®ç»åããéèŠãªæ å ±ãæœåºããããšããææç»ååŠçã®äž»ãªç®çã§ãã
å ±åã®å 容ã¯ãæ©æ¢°åŠç¿ã深局åŠç¿ãªã©ã®ã³ã³ãã¥ãŒã¿ããžã§ã³ææ³ãçšããŠãè€éãªææç»åäžã®åèŠçŽ ãæœåºã»æãèµ·ããæ¹æ³ã«ã€ããŠèª¬æããŸãããå ±åã§æãããã3ã€ã®äŸã¯ãååãã·ã³ã®DNAé«ååææç»åã®èªèããã¯ãæã®åå²ãšèªèãããã³ã¹ãŒããŒãã¯ã»ã«ãšæ¹è¯ãããDenseNetææ³ã«åºã¥ãææç»åã®ã»ã°ã¡ã³ããŒã·ã§ã³ã§ãã
ããã«ãéè¶èå çã¯16æ¥ã®ååŸã«ãåç§äŒã®åŠè¡äŒè°ã䞻宰ããŸããã
æå°éŸããã¯çŠå»ºå·¥çšåŠé¢ã忥ãã2018幎ã«äžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿åŠé¢ã«å ¥åŠããŸãããå ¥åŠåŸãéè¶èå çã®ç»åç ç©¶ã°ã«ãŒãã«åå ããã³ã³ãã¥ãŒã¿ããžã§ã³ã«é¢é£ããç ç©¶ãè¡ããŸããããã®åŸãéå çã®æå°ã®ããšãå»çç»åã»ã°ã¡ã³ããŒã·ã§ã³ã®ããŒããéžæããŸããã3幎éã®åªåã®çµæãæããã¯æ·±å±€åŠç¿ãªã©ã®ããŸããŸãªæè¡ã掻çšããŠãèèãšè «çã®CTç»åã®èªåã»ã°ã¡ã³ããŒã·ã§ã³ãå®çŸããã¹ããŒãå»çã®çºå±ã«è²¢ç®ããŸããã忥åŸãæããã¯é£åœ±å»çæéå ¬åžã§å»çé¢é£ã®ä»äºãç¶ããŠããŸãããŸããæããã¯èª²å€æŽ»åã§åºãçµå²æåŠãèªã¿ãã¹ããŒããæå¥œããå€ãã®è¯åž«çåãšåºäŒããŸãããäžæµ·å€§åŠã§ã®3幎éã®ç ç©¶çæŽ»ã§ãæããã¯å€§ããæé·ããå°æ¥ã®éã®ãã§ç¶ç¶çã«åé²ããã©ãã©ãçªç ŽããŠããããšãæãã§ããŸãã
倧åŠé¢çã®éã«åã
èèãšè «çã®CTç»åã®èªåã»ã°ã¡ã³ããŒã·ã§ã³ã«ãããå»åž«ãæ£è ã®ç¶æ ãããå æ¬çã«è©äŸ¡ããæ²»çèšç»ãç«ãŠãã®ã«åœ¹ç«ã¡ãŸããå€ãã®æ·±å±€åŠç¿æè¡ãçµã¿åãããŠãå®éçãã€å®æ§çãªèšºæããŒã¿ãæäŸããäžŽåºæ²»çã«è²¢ç®ããŸãã
-
å ±åã§ã¯ãFCNãU-Netãªã©ã®æ·±å±€åŠç¿ææ³ããããã¯ãŒã¯æ¬¡å ã®å¶éã«ãããäžæ¬¡å ã®CTç»åã®ç©ºéç¹åŸŽæ å ±ãæ¢çŽ¢ããããšãå°é£ã§ãããšããåé¡ã«å¯ŸåŠããããã«ãå¢çæå€±é¢æ°ãåºã«ãã2.5Då šç³ã¿èŸŒã¿ãããã¯ãŒã¯ãææ¡ããŸããããã®ææ³ã«ããããããã¯ãŒã¯ã®ãã©ã¡ãŒã¿æ°ãšèšç®ãªãœãŒã¹ã®æ¶è²»ãåæžããªãããCTç»åã®ç©ºéç¹åŸŽæ å ±ã广çã«æ¢çŽ¢ããèèãšèè «çã®ã»ã°ã¡ã³ããŒã·ã§ã³ã®ç²ŸåºŠãåäžãããããšãã§ããŸãã
-
å ±åã§ã¯ãå»çç»åã®ç¹åŸŽãšãäžè¬çãªæå€±é¢æ°ããããã¯ãŒã¯æ¢çŽ¢ã«ãããå¢çç¹åŸŽã®èœåãæé©åããããšã«æ¬ ããŠãããšããåé¡ã«å¯ŸåŠãããããæ°ããå¢çæå€±é¢æ°ãèšèšããŸããããã®é¢æ°ã¯ãç»åã®èŒªéã®è·é¢ãé¢ç©ãããã³å¢çæ å ±ãçµ±åããæ·±å±€åŠç¿ãããã¯ãŒã¯ã广çã«æé©åããããå€ãã®ç»åå¢çãšèŒªéç¹åŸŽãæ¢çŽ¢ããããšãã§ããŸãã
-
å ±åã§ã¯ããšã³ã³ãŒãã»ãã³ãŒããããã¯ãŒã¯ã屿çãªç¹åŸŽã®çžé¢æ§ãšäŸåé¢ä¿ãç¡èŠããåé¡ã«å¯ŸåŠããããã«ã2Dã2.5Dã3Dãããã¯ãŒã¯ãšã¢ãã³ã·ã§ã³ã¡ã«ããºã ãçµ±åããåæ¹åã¢ãã³ã·ã§ã³ãåºã«ãããšã³ã³ãŒãã»ãã³ãŒããããã¯ãŒã¯åå²ãã¬ãŒã ã¯ãŒã¯ãææ¡ããŸããããã®ãã¬ãŒã ã¯ãŒã¯ã«ã¯ãåæ¹åèªå·±ã¢ãã³ã·ã§ã³ã¡ã«ããºã ãDenseNetãããã¯ãResNetãããã¯ãããã³åæ¹åãããã¯ãŒã¯ãããã¯ãçµ±åãã9ã€ã®ç°ãªããããã¯ãŒã¯æ§é ãå«ã¿ãèèãšèè «çã®CTç»åã®èªåã»ã°ã¡ã³ããŒã·ã§ã³ã¿ã¹ã¯ã广çã«å®è¡ããããšãã§ããŸãã
è«æãžã®ãªã³ã¯ïŒResearch on liver and tumor segmentation using multi-dimensional encoding-decoding networks
åŒããŒã ã¯åœéåŠè¡èªãNeural Computing and Applicationã(IF:5.606, äžç§é¢2åº)ã«è«æãéãªãåããããªããžã§ã¯ãã®èªèã®ããã®æ°ãã転移åŠç¿ãããªã³ã©ã€ã³ã§çºè¡šããŸããããã®è«æã§ã¯ãäžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠç§åŠåŠé¢ã第äžã®æ©é¢ã§ãããéè¶èåææã第äžèè ããã³éä¿¡èè ãåãã修士課çšã®åŠçã§ããåå®è¹ãå®ç£ç£ãç«¥éºãå€å€§ãªè²¢ç®ãããŸããã






å€ãã®åéã§æ¥éã«çºå±ããŠããããæ§é ç§åŠãšæè¡ã§ãããé«ãã³ã¹ãã®ããã«ãååãªãããªããžã§ã¯ããµã³ãã«ãåŸãããšã¯ãŸã å°é£ã§ããããã®ããææåéã«ãããæ·±å±€åŠç¿æ¹æ³ã®çºå±ã劚ããŠããŸãããã®åé¡ã解決ãããããç§ãã¡ã¯ååéåé¡åŸ®é¡ïŒAFMïŒã®ç»åãããããªããžã§ã¯ããèå¥ããããã®æ°ããæ¹æ³ãèšèšããŸããããŸããLOGã«åºã¥ãç»åãã€ãºé€å»æ³ã䜿çšããŠç»åãååŠçããŸããæ¬¡ã«ãåæ°Žå¶ºã¢ã«ãŽãªãºã ã«åºã¥ããŠãéãªãåããªããžã§ã¯ããåå²ããããã®2ã€ã®æ¹è¯ãããæ¹æ³ãææ¡ããŸãããæåŸã«ã転移åŠç¿ã«åºã¥ãCNNèªèã¢ãã«ãæ§ç¯ããå€§èŠæš¡ææžãæ°åãšæå圢ç¶ã®äºååŠç¿ãéããŠåªããããã©ãŒãã³ã¹ãçºæ®ããã¢ãã«ãååŸããAFMç»åäžã®ãããªããžã§ã¯ããèå¥ããŸãããæ¬ç ç©¶ã§ææ¡ãããææ³ã¯ãAFMç»åäžã®å°èŠæš¡ãªãµã³ãã«ã®ãããªããžã§ã¯ãèå¥åé¡ã广çã«è§£æ±ºããããšãã§ããŸãã
è«æãžã®ãªã³ã¯ïŒhttps://doi.org/10.1007/s00521-021-06731-y
ç§ãã¡ã®ããŒã ãšäžæµ·å€§åŠæ©æ¢°èªåŠé¢ã®æç«å¯ææã®ããŒã ã«ãããåœéåŠè¡éèªãBiomedical Signal Processing and Controlã(IF:2.954,äžåœç§åŠé¢2åº)ã«ãªã³ã©ã€ã³ã§çºè¡šãããè«æãA classification method for EEG motor imagery signals based on parallel convolutional neural network.ã ãã®åŠè¡èªã®JCRããã³äžåœç§åŠé¢ã®SCIåºåã¯2åºã«åé¡ãããŠããŸãããã®è«æã«ãããŠäžæµ·å€§åŠèšç®æ©åŠé¢ã第äžèè åäœãšãªã£ãŠãããéè¶è坿æã第äžèè ããã³é£çµ¡èè ãšãªã£ãŠããŸãã
深局åŠç¿ã¯çŸåšã®ç ç©¶ã«ãããŠæ§ã ãªçš®é¡ã®ç»ååé¡ã«åºãæåè£ã«å¿çšãããŠããŸãããããããªãããEEG(è³é»æ³¢)ã¢ãŒã¿ãŒã»ã€ã¡ãŒãžã³ã°åé¡ã«æ·±å±€åŠç¿ææ³ã極ããŠéãããŠããŸãããæ¬ç ç©¶ã§ã¯ãEEGã·ã°ãã«ã®äºååŠçã¢ã«ãŽãªãºã ãšããŠãã©ã¬ã«ã³ã³ããªã¥ãŒã·ã§ãã«ãã¥ãŒã©ã«ãããã¯ãŒã¯(PCNN)æ§é ãææ¡ãEEGã·ã°ãã«ã®åé¡ã«äœ¿ããŸããåå§EEGã·ã°ãã«ã®è¡šçŸã®çºã«ã空éãã£ã«ã¿ãªã³ã°ãšåšæ³¢æ°åž¯åæ å ±ãçµã¿åãããŠæ°ãã圢åŒã®ç»åãäœæããŸãããPCNNã«äœæããç»åãå ¥åãããšãåé¡èœåãæé©åãã3ã€ã®ç°ãªããµãã¢ãã«ãã¹ã¿ãã¯ã§çµ±åããŸããæ¬æ¹æ³ã¯BCI competition IVããŒã¿ã»ãã2bäžã§å¹³å83.0±3.4%ã®æ£ç¢ºåºŠãéæããæ¯èŒææ³ããå°ãªããšã5.2%åªç§ã§ããåããŒã¿ã»ãã2bäžã§æ¬æ¹æ³ã®å¹³åKappaå€ã¯0.659±0.067ã§ããããæ¯èŒã¢ã«ãŽãªãºã ããå°ãªããšã20.5%æ¹åããŸãããçµæããæ¬æ¹æ³ã¯EEGã¢ãŒã¿ãŒã€ã¡ãŒãžã³ã°ã·ã°ãã«åé¡ã«ãããŠåªããŠããããšã瀺åãããŸããã
è«æãžã®ãªã³ã¯ïŒhttps://doi.org/10.1016/j.bspc.2021.103190
ãããžã§ã¯ããªã³ã¯ïŒhttps://github.com/han-yuexing/eegmotor
ç§ãã¡ã®ããŒã ãšäžæµ·å€§åŠææåºå å·¥åŠç ç©¶é¢ã®æ¥ç¯ææã®ç ç©¶ã°ã«ãŒãã¯ãåœéåŠè¡èªãChemistry of Materialsã(IF:9.872ãäžåœç§åŠé¢1åºããã)ã«ãªã³ã©ã€ã³ã§è«æãAccelerating the Discovery of CuâSnâS Thermoelectric Compounds via High-Throughput Synthesis, Characterization, and Machine Learning-Assisted Image Analysis.ããçºè¡šããŸããããã®åŠè¡èªã¯å·¥åŠæè¡ã»ææç§åŠãå«ãç·åçãªç ç©¶åéã®ãããã¬ãã«ã®åŠè¡èªã®1ã€ã§ãããJCRããã³äžåœç§åŠé¢ã®SCIåºåã¯1åºãããã«åé¡ãããŠããŸãããã®è«æã§ã¯äžæµ·å€§åŠã第äžåäœãšãªã£ãŠãããææåºå å·¥åŠç ç©¶é¢ã®å士ç ç©¶çã®çèã第äžèè ãææåºå å·¥åŠç ç©¶é¢ã®æ¥ç¯ææãå¥ææææãããã³èšç®æ©å·¥åŠç§ã®éè¶è坿æãå ±åé£çµ¡èè ãšãªã£ãŠããŸãã
HTP(ãã€ã¹ã«ãŒããã)ææ³ã¯ææç ç©¶éçºãä¿é²ãã匷åãªææ³ãšãªã£ãŠããŠããŸãããã®ç ç©¶ã§ã¯ãHTP åæãšè©äŸ¡ãçµã¿åãããããšã«ãããML(æ©æ¢°åŠç¿)ç»åã»ã°ã¡ã³ããŒã·ã§ã³ææ³ã®æ°ããªç±é»ææçºèŠèœåã瀺ããŠããŸãããŸããæ¹åãããæ¡æ£åæHTPææ³ã«ãã9çš®é¡ã®ç°ãªãåææ¯ã®ã·ãªã³ããŒè©Šæã調補ããŸãããããããã®åææ¯åºå®çã«å¯ŸããŠã¹ãã£ãã³ã°é»åé¡åŸ®é¡ã§èšæž¬ãè¡ããèæ£ä¹±é»ååãåèš99ææ®åœ±ããŸããã99æã®èæ£ä¹±é»ååããç°ãªãçžãé«éã«ã»ã°ã¡ã³ããŒã·ã§ã³ããããã«ã2ã€ã®MLç»åã»ã°ã¡ã³ããŒã·ã§ã³æŠç¥ãææ¡ããŸãããåé¡ç²ŸåºŠ0.9ãšãªãã倧éã®ç»åã®èªååé¡ã«äœ¿çšããŸããã第äžã®æŠç¥ããåé¢ããã2ã€ã®äž»èŠçžã®EDSè©äŸ¡çµæããæ°ããååç©Cu7Sn3S10ãçºèŠããzTå€ã¯0.6ãè¶ ããŸãããç£ç£æŠç¥ã«å¯Ÿããç£ç£ãããŠããªãæŠç¥ã«ããããã«æªçºèŠååç©Cu1.6Sãåå®ããŸããããã®çµæãããæã ã®ç ç©¶ã¯HTPåæããèªååæãŸã§ãç¶²çŸ ããäžäŸã瀺ããHTPè©äŸ¡ãšæ°èŠååç©åå®ã®èªåååæãå®çŸããŸããã
è«æãžã®ãªã³ã¯ïŒhttps://doi.org/10.1021/acs.chemmater.1c01856

éæå¡ããããããã! éããã¯è¥¿åæ°æå€§åŠã®ãœãããŠã§ã¢å·¥åŠéšã§åŠéšèª²çšãä¿®äºããçŸåšäžæµ·å€§åŠã®ç¡å£«èª² çšã®ä¿®åŠçã§ãã éããã¯ç¬é¡ãå€ããæ¥œãããã·ã³ãã«ã«ã鳿¥œãæããèªç±ã«ããããŠããããéãã«ããã㊠ãããã§ããããšã奜ã¿ãŸããéããã®æŽå²ã¯è¯ããã§ã¯ãªããäžæ©äžæ©èªåã蚌æããŠããŸãããéããã¯åŠç¿å§å¡ ãçµéšããŠãããããŒã ã§æ°åŠã¢ããªã³ã°ã³ã³ãã¹ãã«åå ãåè³ããŠããŸããç ç©¶çãšããŠæšèŠæ ãåŸãŠããããšã ããæåã¯ç°¡åã§ã¯ãªããšããããšãçè§£ããŠãããšã®ããšã§ãã æ§æ ŒãšããŠã¯ãéããã¯æãããååãã§ãã㌠ã ã¯ãŒã¯ãã§ããããæ°ããã£ãŠæéãããã調æŽãšã³ãã¥ãã±ãŒã·ã§ã³ã¹ãã«ã«åªããæè»æ§ããããçºæ³ãè±ãã ãšããããšã§ããéããã¯çé¢ç®ã§ç±å¿ã§è²¬ä»»æããããæåã§æéæŠå¿µããããšãããŸãã瀟äŒäœéšã«ç©æ¥µçã«åå ããŠãèªåã®æèœãçºæ®ãæœåšèœåãæãèµ·ããããšããŠããŸããé壿èã匷ããããŒã ã¯ãŒã¯ã«å±ãã§ããŸãã æ°ããåŠç¿ç°å¢ã§ã¯ãéããã¯åŒãç¶ãåªåãéããèœåãé«ããæ°ãããã£ã¬ã³ãžãè¿ããŠçæ§ãšäžç·ã«æé·ããŠã ããããšèããŠããŸãã
é³å°ç«ããããããã! é³ããã¯äžåœæµ·æŽå€§åŠæ å ±ç§åŠå·¥åŠéšé»åæ å ±ç§åŠæè¡å°æ»ã§åŠéšèª²çšãä¿®äºããçŸåšäž 海倧åŠèšç®æ©ç§åŠæè¡å°æ»ã®ä¿®å£«èª²çšã«åšç±ããŠããŸãã æ§æ Œã¯æãããç ç©¶ãæããã³ãã¥ãã±ãŒã·ã§ã³ãããŸã ãšããããšã§ããåŠç¿ãšç ç©¶ã§ã¯ãšãŠã峿 Œã§çްããç¹ã«æ³šæããç¥èäœç³»ãèŠçŽãããšããããããŸããäœææé㯠åç»ãèŠããããã©ãŒã©ã ã«ãããããããŸãã äžæµ·å€§åŠã®ä¿®å£«èª²çšç掻ã«ãããŠãé³ããèªèº«ãåäžãããæå¡ã åŠçãšäžç·ã«ç ç©¶ãšèšç®æ©æè¡ã鲿©ãããããšèããŠããŸããé³å°ç«ãããäžæµ·å€§åŠã§ã®ä¿®å£«èª²çšç掻ãå¿ãããç¥ ãããŸããé 匵ã£ãŠäžããã


æ± æŽ³å©·ããããããã!掳婷ããã¯äžæµ·å€§åŠèšç®æ©åŠé¢ç¥èœç§åŠæè¡å°æ»ã§åŠéšèª²çšãä¿®äºããçŸåšåãèšç®æ©åŠé¢ ã®èšç®æ©ç§åŠæè¡å°æ»ã®ä¿®å£«èª²çšã«åšç±ããŠããŸããéè¶èå çã®ããšã§ç ç©¶ããŠããŸãã æšçæ ç»ãæ§ã ãªçš®é¡ã® æ¬ã奜ãã§ããžã§ã®ã³ã°ãæçãæ¥œããã§ããŸããæ§æ Œã¯æãããç©æ¥µçã« Optimistic ã§ãèããã®ã奜ã¿ãã㣠ã¬ã³ãžãã«ã§ããæ°ããéã®äžã§ã掳婷ããã¯ãã£ããã®èªå·±å®çŸãæåŸ ããŠããŸãã æŽ³å©·ããã修士課çšã§é 匵㣠ãŠãã ãããæ°å€©å°ã§ãããããªåºäŒãããããšãããšæããŸãã
äžå æ°ããããããã!äžããã¯æ¡æç工倧åŠèšç®æ©ç§åŠæè¡å°æ»ã忥ããçŸåšäžæµ·å€§åŠã®èšç®æ©ç§åŠæè¡ã®ä¿®å£« 課çšã«åšåŠããŠããŸããæ§æ Œã¯æããã人ãšããŸããã£ãŠãããŠãã³ãã¥ãã±ãŒã·ã§ã³ãåããŠãé 匷ã§å ççã§è²¬ä»» æããããŸããäžããã¯å°é£ã«æ£ç¢ºã«åãåããç°å¢é©å¿åã«åªããŠãŸããå·éã«å¯ŸåŠã§ããŠãä»äºã successfully å®éã§ããèªä¿¡ããããšãããŸããè¶£å³ã¯æ¬ãèªãã ã鳿¥œãèŽãããããµã¹ãã³ã¹æ ç»ãèŠããã㊠ãªã©ãã¯ã¹ããããšæã£ãŠããŸãããŸãããããã³ãã³ãåçããžã§ã®ã³ã°ã§äœãéããŠãŸãã çæŽ»ã§ã¯çé¢ç®ã«è²¬ ä»»ãæã¡ãããšæããå°ããªç®æšãèšå®ããŠèªå·±åæ©ã¥ããããããšããŠããŸããäžããã®ã¢ãããŒã¯ãæå=åªå+æ£ ããæ¹æ³+話ãå°ãªãããããšããããšã§ããäžæµ·å€§åŠã®æéã®äžã§èªåã®æåãåç©«ã§ããŸãããé¡ã£ãŠããŸããäž ããã修士課çšã§é 匵ã£ãŠãã ããã

æã ã®ããŒã ãšäžæµ·å€§åŠææåºå å·¥åŠç ç©¶é¢ã®å·«éæ³¢ææã®ç ç©¶ã°ã«ãŒãã¯ãåœéåŠè¡èªãSmallã(IF:11.459,äžåœç§åŠé¢1åºããã)ã«ãªã³ã©ã€ã³ã§è«æãUnclonable Micro-Texture with Clonable Micro-Shape towards Rapid, Convenient, and Low-Cost Fluorescent Anti-Counterfeiting Labelsããæçš¿ããŸããããã®åŠè¡èªã¯å·¥åŠæè¡ã»ææç§åŠãå«ãç·åçãªç ç©¶åéã®ãããã¬ãã«ã®åŠè¡èªã®1ã€ã§ãããJCRããã³äžåœç§åŠé¢ã®SCIåºåã¯1åºãããã«åé¡ãããŠããŸãããã®è«æã§ã¯äžæµ·å€§åŠã第äžåäœãšãªã£ãŠãããäžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠç§ã®åŒµå®å€ä¿®å£«èª²çšçãšææåºå å·¥åŠç ç©¶é¢ã®æå®å®ã»éŠ®éèžä¿®å£«èª²çšçãå ±å第äžèè ãšãªã£ãŠãããå·«éæ³¢ææãšéè¶è坿æãå ±åé£çµ¡èè ãšãªã£ãŠããŸãããã®ç ç©¶ã¯åŒµçµ±äžé¢å£«ãæž©ç¶äœ³ææãããã³æ²çžç§åŠæè¡ç ç©¶æ(OIST)ã®æäºå°ææãã匷åãªãµããŒããåŸãŠããŸãã
é«çŽãã©ã³ãããå»ç補åã«è³ããŸã§ãæš¡é åœé åã¯å·šå€§ãªçµæžæå€±ãšäººã ã®å¥åº·ãªã¹ã¯ããããããŠããŸããçŸåšåºã䜿çšãããŠããé²åœã©ãã«ã¯æ±ºå®è«ççç£ããã»ã¹ã«æ ¹ãããŠãããç°¡åã«è£œé ã§ããäžæ¹ã§å®¹æã«ã³ããŒã§ããŠããŸããŸããç©ççãªéè€è£œæ§æ©èœ(PUF)ãæã€é²åœã©ãã«ãçç£ããããšã¯å®çŸå¯èœãªè§£æ±ºçã§ãããåŸæ¥ã®PUFèªèæè¡ã§ã¯ããŒã¿ããŒã¹ã«ããå šãŠã®ç»åãšäžæ§ã«ãããã³ã°ããå¿ èŠããã£ãŠã補é ã³ã¹ããé«ãèªèé床ãé ããšãã課é¡ããããŸããã æã ã®ç ç©¶ã§ã¯ããã€ã¯ããã¯ã¹ãã£ãéè€è£œçã§ãããªãããã€ã¯ãã·ã§ã€ããè€è£œå¯èœãªæ°ããæŠå¿µãææ¡ããéãç°¡åã«äœã³ã¹ããªèå é²åªã©ãã«ã®éçºãå¯èœã«ããŸããã
äžè¿°ã®åé¡ã解決ããããããã®ç ç©¶ããŒã ã¯ãã©ã¬ã«ãã£ã¹ã³ã³ããã¥ã¢ã¹ãŠã§ããã£ã³ã°æè¡ãçšããŠ4å±€ã®é²åœæ©èœãæã€é«ç²ŸåºŠã«ã©ãã«ã補é ããŸãããã«ã«ãµã€ãé±ç·ã ãŒã³å ã¯ç¬¬äžã®é²åœæ©èœã§ããã ãã¯ãæ§æåäœãããªããã¯ããã¿ãŒã³ã¯ããŒã³ãŒããªã©ã®æ å ±ãæºã第äºã®é²åœæ©èœã§ããã圢æ ã®ç°ãªããã€ã¯ãåäœã¯ç¬¬äžã®é²åœæ©èœã§ãããèªå·±çµç¹åããã©ã³ãã ããã»ã¹ããçããè€è£œäžå¯èœãªãã¯ã¹ãã£ãŒã¯ç¬¬åã®é²åœæ©èœã§ãã ãã®ã©ãã«ã¯ã³ã¹ããäœãã補é ãç°¡åãã€éããé«ãé²åœæ§èœãå®çŸããŸãããæã ã®ã¢ãã«ã¯ãã€ã¯ããã¯ã¹ãã£ãéè€è£œçã§ãããªãããã€ã¯ãã·ã§ã€ããè€è£œå¯èœã§ãããããåŠç¿ã®å¿ èŠãªãé«éã«æ€ç¥å¯èœã§ãã
æã ã®äž»ãªç ç©¶ã¯å®éã®èèãã¿ãŒã³ãå«ãããŒã¿ããŒã¹ã®èšèšãšæ§ç¯ãè¡ããŸããã圢ç¶ããŒã¿ããŒã¹ãšãã¯ã¹ãã£ããŒã¿ããŒã¹ãå«ãŸããŠããŸããCNL(ã©ã³ãããŒã¯ã®æ°ãã³ã³ãããŒã«)æ¹æ³ãæ¹åãããããå€ææ¹æ³ã圢ç¶ç©ºéçè«ãçšããŠåœ¢ç¶ã®èå¥ãè¡ããç¶ããŠGMS(ã°ãªããããŒã¹ã®ã¢ãŒã·ã§ã³çµ±èš)æ¹æ³ãçšããŠã©ãã«ã®ãã¯ã¹ãã£ãŒã®åå®ãè¡ããŸããã 圢ç¶ããŒã¿ããŒã¹ãã埮现åäœã®åœ¢ç¶ç¹åŸŽéãæœåºãããã¯ã¹ãã£ããŒã¿ããŒã¹ãããã¯ã¹ãã£ç¹åŸŽéãæœåºããŸãããåŠç¿æ®µéãªãã§åŸ®çްåäœã®åœ¢ç¶ã®äžèŽçã¯99.5%ããã¯ã¹ãã£ã®äžèŽçã¯100%ã«éããŸããã ãã®ããã«ãç§ãã¡ã®ææ¡ããã©ãã«ã¯ãã€ã¯ããã¯ã¹ãã£ãéè€è£œçã§ãããªãããã€ã¯ãã·ã§ã€ããè€è£œå¯èœãªãããé«éãã€æ£ç¢ºã«æ€ç¥ã§ãããšããå©ç¹ããããŸãã
å®éã®å¿çšäŸã§ã¯ãã¹ããŒããã©ã³ãæºåž¯åé¡åŸ®é¡ãçšããŠé²åœãã€ã¯ããã¿ãŒã³ãååŸãèªèãœãããŠã§ã¢ã§ç §åããŠåå®ãè¡ããŸãããããçµæ¶èèã®æ§ã ãªèŒªé圢ç¶ã现åããŠãåé¡èšå·ããšããŠç»åããŒã¿ã®åå®ã«çšããŸããããã®ãåããŠæ²»ããæŠç¥ã«åºã¥ãèªèšŒæè¡ã§ã¯ãæéã20å以äžåæžã§ããããšã瀺ãããŸãããé«éåææè¡ãšããŒã¿äž»å°åãããªã¢ã«å¿çšãçµã¿åããããŠãAgent costã2.1 à 10^-4USDãèªèšŒãéãç°¡å(ç·æé12.17s)ããšã³ã³ãŒã容éã2.1 à 10^623ã«éããŸããã çµè«ãšããŠãæã ã®ææ¡ããã©ãã«ã¯ãã€ã¯ããã¯ã¹ãã£ãéè€è£œçã§ãããªãããã€ã¯ãã·ã§ã€ããè€è£œå¯èœæ§ãšããå©ç¹ã掻çšããé«éãã€æ£ç¢ºã«èªèšŒããããšãã§ããŸããã
ãã®é¢é£ç ç©¶ã¯åœå®¶éç¹ç ç©¶éçºããã°ã©ã (2020YFB0704503, 2018YFB0704400,2018YFB0704402)ãåœå®¶èªç¶ç§åŠè²¡å£(21775101)ã111ãããžã§ã¯ã(D16002)ãäžæµ·ç§åŠæè¡å§å¡äŒãããžã§ã¯ã(20ZR1419000)ããè³éæäŸãåããŠããŸãã ç ç©¶ãåŸæŒãããããã®å€é¡ã®è²¡æ¿æ¯æŽãããããšã¯ããã®éèŠãªç ç©¶ã®äŸ¡å€ã瀺ããŠããŸããéçºãããæè¡ã¯åœé 鲿¢åéã«å€§ããªåœ±é¿ãäžããå¯èœæ§ããããŸãã
è«æãžã®ãªã³ã¯ïŒhttps://onlinelibrary.wiley.com/doi/10.1002/smll.202100244
äœæµå ãå èæãå®çµ¡é ãæ± æŽ³å©·ãæœæ¬å®ãåŸè¹ãããã¡ã忥ããã§ãšãããããŸã!äœãããã¡ã¯çäžæµ·å€§åŠèšç®æ©ç§åŠæè¡å°æ»ãå°æ»ããŠããã2幎次ããéè¶èå çã®æå°ã®äžèšç®æ©ããžã§ã³ã®ç ç©¶ãè¡ã£ãŠããŸããã忥ç ç©¶ãéå çã®æå°ã®äžè¡ãããŸããã 4幎ã®åŠéšèª²çšã¯ããããŸéãå»ããŸããããçæ§ããããã®çæ³ãæã¡ãªããååãã«æ°å€©å°ãžãšçŸœã°ãããŠãããŸãã忥ããã§ãšãããããŸããæ°å€©å°ã§ã® challenge ã«ãã£ã¬ã³ãžããŠãã ããã
å èæããã¯Optimisticã§èªåã«ãã£ã¬ã³ãžããå°é£ã«åæ¢ã«åãåã£ãŠå æããŠããŸãããäžæµ·å€§åŠã§ã®4幎éãå ããã¯å€ãã®ç¥èãåŸããšãšãã«å€ãã®è¯ãå人ãå çãšåºäŒã£ãŠããŸãããæªæ¥ã«åãã£ãŠå ãããç©æ¥µçã«ãã£ã¬ã³ãžããŠæé·ããŠããããšãé¡ã£ãŠããŸãã
å®çµ¡é ããã¯æããæ§æ Œã§ãå¹ åºãèå³ãæã£ãŠããŸããåŠç¿ã«åªåããäžæ¹ã§ããã°ãã°å³æžé€šã§æ¬ãèªãã ã鳿¥œãèŽãããããŠããŸããäœææéã«ã¯æ³³ãã ããããã³ãã³ããããããŠãªã©ãã¯ã¹ããŠããŸããäžæµ·å€§åŠã§ã®4幎éã¯å®ããã«å€ãã®æãåºãæ®ããŸãããå®ããããã€ãååãã«æé·ããŠããããšãé¡ã£ãŠããŸãã
æ± æŽ³å©·ããã¯ç©æ¥µçã§Optimisticã§èããäºã奜ãã§ãã£ã¬ã³ãžç²Ÿç¥ã«æºã¡ãŠããŸããäœæã«ã¯æ¬ãèªãã ããžã§ã®ã³ã°ããããæçããããããŸãã忥åŸã掳婷ããã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿åŠéšã®ä¿®å£«èª²çšã§éè¶èå çã®äžã§ç ç©¶ãç¶ããŠãããŸããæ°ãã人çã§ãã£ããã®èªå·±å®çŸãé¡ã£ãŠããŸããæŽ³å©·ãããé 匵ã£ãŠãã ããã
åŸè¹ããã¯çé¢ç®ã«åçµã¿äºã«å¯ŸåŠãå·éã«å¯Ÿå¿ã§ããŸããåéãäœãã®ã奜ãã§ãæ è¡ãè¶£å³ã§å¥åº·ç®¡çã«å€ãçãçããšããŠããŸãã修士課çšã§ã¯æµæ±å€§åŠã®ãœãããŠã§ã¢å·¥åŠå°æ»ã§ããŒã¿ããŒã¹ç ç©¶ãè¡ããŸããã³ã³ãã¥ãŒã¿ãŒã®äžçã§åŸãããæªæ¥ã®ç ç©¶ãšä»äºã®ãã£ãªã¢ã§èªåã«å¿ èŠäžå¯æ¬ ãªäºæãèŠã€ããŠæé·ããŠããããšãé¡ã£ãŠããŸããåŸããé 匵ã£ãŠãã ãã!
äœæµå ããã¯äººãšçå£ã«æ¥ããã³ãã¥ãã±ãŒã·ã§ã³ããšãäºãäžæã§ãççŽã§ç±å¿ã«äººã«æ¥ããŠããŸãã責任æããããŸããæªæ¥ã®åŠç¿ã®äžã§äœãããèªåèªèº«ãå®å šã«ããŠããèªåãè¶ ããŠããããšãé¡ã£ãŠããŸã!äœããã®åŠæ¥åã³ãã£ãªã¢ã«é 調ãç¥ã£ãŠããŸãã
æœæ¬å®ããã¯æããæ§æ Œã§çé¢ç®ã«åãçµã¿ãŸãã鳿¥œãšèªæžãè¶£å³ã§ãã忥åŸã埩æŠå€§åŠã®èšç®æ©åŠéšã§äººå·¥ç¥èœæ¹åã®ä¿®å£«èª²çšãå°æ»ããŸããäžæµ·å€§åŠã§ã®4幎éãæœããã¯å€ãã®è¯ãå çãå人ã«åºäŒããŸãããæªæ¥ã圌ã¯äººçã®éã®ãã§ãããããã«ããã°ããèªå·±å®çŸã§ããŸãããé¡ã£ãŠããŸããæœãããé 匵ã£ãŠãã ããã
å床ã忥ããã§ãšãããããŸããçãããå°æ¥ã®äººçãåé²ããŠããäžã§ãæ³¢ã®äžãæ³³ãã§ããããšãã§ããŸãããé¡ã£ãŠããŸããçãããèªåèªèº«ã®è¿«å€§ãªäººçç®æšãå®çŸããããã«ããã°ã£ãŠãã ãããçŸåšã倧åã«ã人çã倧åã«ããŠããã®åªåã®äžããèªåèªèº«ãšç¥åœã«çŸããæªæ¥ãçã¿åºããŠãã ãããæ±ºå¿ãèªä¿¡ãç²ã匷ããå¿èåããã®4ã€ã®ãå¿ããåžžã«çãããšãšãã«ããããšãé¡ã£ãŠããŸãã çããã®æºæµã®äžããèŒã人çãåµãåºããŠãã ããã
åŠçã®è©äŸ¡ã«ããã2019幎ã«ç¬¬1åã®åŠéšåªç§ã¯ã©ã¹ã¢ããã€ã¶ãŒãã2020幎ã«ç¬¬2åã®åŠéšåªç§ã¯ã©ã¹ã¢ããã€ã¶ãŒãåè³ããŸããã2021幎5æ14æ¥ã®æè³åŒã«åå ããŸãããä»åŸãããã«ç²Ÿé²ããŠãããªããã°ãªããŸãããå çã®è²¬ä»»ã¯æè²ãšç ç©¶ã®2ã€ããããšæããŸãããã以å€ã®ä»äºã¯ããããè£å©ããããã®ãã®ã ãšããããšãèŠããŠãããŸãã



