ããªã»ã·ã§ã³ããŒã¯ãäžæµ·å€§åŠã§åŠå£«å·ãååŸãã2022幎ããäžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ã§åŠè¡å修士課çšãéå§ããŸãããããªã»ã·ã§ã³ããŒã¯åŠéš4幎çã®æããéè¶èç 究宀ã«åå ããç»ååŠçã«é¢é£ããæè¡ãšå¿çšãç ç©¶ããŠããŸãããéå çã®äžå¯§ãªæå°ã®äžã以äžã®ç ç©¶ãç¶ç¶ããçºå±ãããŸããïŒ
-
æ©èœæ§ææç»åã«å«ãŸããå€éå±€ç¹åŸŽã®è€éæ§ã«éã¿ãŠãæ¹è§£ç³PUFåœé 鲿¢ã©ãã«ã®çèŽãäºæž¬ãã課é¡ã解決ããããã«ãåå³°æ§ç¹åŸŽãã«ãããªã³ã°ã«åºã¥ãè»œéæ·±å±€åŠç¿æ³ãææ¡ãããç¹åŸŽãã«ãããªã³ã°æŠç¥ã¯ãå·šèŠçç¹åŸŽãšåŸ®èŠçç¹åŸŽã®åŠç¿ãç¬ç«ããæ®µéã«åé¢ããç¹åŸŽã®ç°ãªãå±€éã®å¹²æžãäœæžãããé«å¹çãšäœé å»¶ã®èŠæ±ãæºããããã«ã軜éãªçºæ£ç³ã¿èŸŒã¿ãããã¯ãŒã¯ãèšèšããããã®ã³ã¢ãšãªãçºæ£ç³ã¿èŸŒã¿ã¡ã«ããºã ãèšç®è€é床ãå€§å¹ ã«äœæžãããåæã«ãã¯ã©ã¹éè·é¢ãå¢å ãããã¯ã©ã¹å å·®ãæžå°ãããããšã§ãç¹åŸŽéã®èå¥èœåãé«ããããã«ãäœåãªè§åºŠå¢çæå€±é¢æ°ãçšãããæªç¥ãµã³ãã«ã®å¹æçãªæ£åŽãéæããããã«ã髿¬¡å 倿§äœç©ºéã«ãããæž¬å°ç·è·é¢ã«åºã¥ããŠãµã³ãã«ã®çåœãäºæž¬ããæž¬å°ç·ã¡ããªãã¯ãææ¡ããã
-
æ©èœæ§ææã®ãã«ãã¢ãŒãã«ãªç°çš®ããŒã¿ç¹åŸŽã®èåãå°é£ã§ãããšããåé¡ã«çç®ããã¢ã«ã®ã³é žã«ã«ã·ãŠã /ã°ã©ãã§ã³è€åææã®ç¹æ§ãäºæž¬ãããšãã課é¡ã解決ããããã«ããã«ãã¢ãŒãã«ç¹åŸŽèåã«åºã¥ã軜éãªãã£ãŒãã©ãŒãã³ã°ææ³ãææ¡ãããããŒãã«é§ååã®ç¹åŸŽèåãããã¯ãŒã¯ãèšèšããããšã«ãããç»åãšããŒãã«ãšãã2ã€ã®ç°çš®ããŒã¿ãœãŒã¹ã广çã«çµ±åãããããã®ãããã¯ãŒã¯ã«ã¯2ã€ã®ã³ã¢ã¢ãžã¥ãŒã«ãå«ãŸããïŒãã©ãŒã èªå°åèŠèŠçæå³åŒ·èª¿ã¢ãžã¥ãŒã«ãšã²ãŒãåç¹åŸŽèåã¢ãžã¥ãŒã«ã§ãããããŒãã«èªå°åèŠèŠçæå³åŒ·èª¿ã¢ãžã¥ãŒã«ã¯ãããŒãã«æ å ±ãçšããŠãæ·±ãã¯ãã¹ã¢ãŒãã«ã¢ã©ã€ã¡ã³ããšåŒ·èª¿ã®ããã®èŠèŠçç¹åŸŽåŠç¿ãèªå°ããã²ãŒãããç¹åŸŽèåã¢ãžã¥ãŒã«ã¯ãã¯ãã¹ã¢ãã³ã·ã§ã³ãšã²ãŒãã£ã³ã°ã¡ã«ããºã ã«ããã广çãªã¢ãŒãã«éçžäºäœçšãã¢ã©ã€ã¡ã³ããé©å¿çéã¿ä»ãèåãå®è¡ãããäžæ¹ãèšç®å¹çã確ä¿ããããã«ããããã¯ãŒã¯ã¯ã·ã£ã³ãç³ã¿èŸŒã¿ããã³ããªã©ã®è»œéèšèšãæ¡çšããŠããã
ããªã»ã·ã§ã³ããŒã¯ãäžæµ·å€§åŠã§ã®3幎éã®å€§åŠé¢ç掻ã®äžã§ãåªåããŠåŠã³ãçå£ã«ç ç©¶ãè¡ããå°éç¥èãé«ããå€ãã®è¯ãå人ãã¡ã³ã¿ãŒã«æµãŸããŸãããããªã»ã·ã§ã³ããŒãä»åŸã®éã®ãã§åå¿ãå¿ããã䜿åœãèžã«å»ã¿ãå°é£ãä¹ãè¶ããåé²ãç¶ããããšãé¡ã£ãŠããŸãã
è«æãªã³ã¯ïŒæ©èœææããŒã¿ã®ç¹åŸŽåŠçãšäºæž¬æ¹æ³ã«é¢ããç ç©¶
ã°ãšã³ã»ã¬ã»ãã³ã¯ãäžæµ·å€§åŠã§åŠå£«å·ãååŸãã2022幎9æããäžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ã§ä¿®å£«èª²çšãéå§ããŸãããç ç©¶ã°ã«ãŒãã«åå ããåŸãéè¶èå çã®æå°ã®äžã圢ç¶ç©ºéçè«ãç»åçæã«é¢ããæè¡ãšå¿çšãåŠã³ãŸãããéå çã®äžå¯§ãªæå°ã®äžã以äžã®ç ç©¶ãè¡ããŸããïŒ
-
ç»åçæã¢ãã«ããã¬ãŒãã³ã°ãµã³ãã«ãäžè¶³ããŠããå Žåãé©åãªäºåãã¬ãŒãã³ã°ã¢ãã«ããªãå Žåã«çŽé¢ãã課é¡ã«å¯ŸåŠããããã«ãäºå圢ç¶ç©ºéã®æž¬å°æ²é¢æ å ±è»¢éã«åºã¥ãç»åçææ¹æ³ãææ¡ããŸãããã®æ¹æ³ã¯ãã¢ãã«ãéåžžã«å°ãªããµã³ãã«ååžã广çã«åŠç¿ããã®ãé£ãããšããããã«ããã¯ãå æããé«å質ã§å€æ§ãªç»åãçæããããšãç®çãšããŠããŸãããã®ã³ã¢ããã»ã¹ã¯æ¬¡ã®ãšããã§ãããŸããå°æ°ã®ãµã³ãã«ã®æ·±å±€ç¹åŸŽãæœåºãããããã®ç¹åŸŽã䜿çšããŠäºå圢ç¶ç©ºéã«æž¬å°æ²é¢ãæ§ç¯ããéç·åœ¢ç¹åŸŽåŒ·åãè¡ããŸããæ¬¡ã«ã匷åãããç¹åŸŽã«åºã¥ããŠæ¬äŒŒãœãŒã¹ãã¡ã€ã³ãæ§ç¯ããè±å¯ãªããŒã¿ååžãã·ãã¥ã¬ãŒãããæ¬äŒŒãœãŒã¹ãã¡ã€ã³ããã¿ãŒã²ãããã¡ã€ã³ãžã®æ å ±è»¢éãè¡ããŸããæçµçã«ãæ å ±è»¢éæ®µéã§è£éç£èŠãšæ£ååå¶çŽãé©çšããŠæé©åããŸããå®éšã«ãããæ¢åã®æ¹æ³ãšæ¯èŒããŠããã®æ¹æ³ã¯å€é åããŒã¿ã»ããã§çæç»åã®å質ã詳现ã®è±ãããããã³å€æ§æ§ãå€§å¹ ã«åäžãããã¢ãŒã厩å£ã广çã«ç·©åããçæç»åãäžæµã¿ã¹ã¯ãæ¯æŽããå¯èœæ§ã瀺ããŸããã
-
ããã¹ãèªå°åãŒãã·ã§ããç»åã¹ã¿ã€ã«è»¢éã¿ã¹ã¯ã®èª²é¡ã«å¯ŸåŠããããã«ãäºå圢ç¶ç©ºéã«ãããæž¬å°æ²é¢ç¹åŸŽåŒ·åã«åºã¥ããŒãã·ã§ããã¹ã¿ã€ã«è»¢éæ¹æ³ãææ¡ããŸãããã®æ¹æ³ã¯ãå€éšã®æ°ããã¹ã¿ã€ã«æ å ±ãäºåãã¬ãŒãã³ã°ã¢ãã«ã«å¹ççã«æ³šå ¥ããã¹ã¿ã€ã«ã®äžè²«æ§ãšã³ã³ãã³ãã®æ£ç¢ºæ§ã確ä¿ããããšãç®çãšããŠããŸããå ·äœçã«ã¯ããã®æ¹æ³ã¯æž¬å°æ²é¢ç¹åŸŽåŒ·åã®èãæ¹ãäºåãã¬ãŒãã³ã°æ¡æ£ã¢ãã«ã«åºã¥ãã¹ã¿ã€ã«è»¢éãã¬ãŒã ã¯ãŒã¯ã«é©çšããã¹ã©ã€ãã£ã³ã°ãŠã£ã³ããŠã¯ãããã³ã°ãçµã¿åãããŠå±ææ å ±ãåŠçããæž¬å°æ²é¢ç¹åŸŽåŒ·åã¢ãžã¥ãŒã«ãå©çšããŠäºå圢ç¶ç©ºéã«ãããã¹ã¿ã€ã«ãšã³ã³ãã³ãç¹åŸŽã®å¹æçãªèåãä¿é²ããŸããå®éšçµæã¯ããã®æ¹æ³ã远å ã®ã¢ãã«åŸ®èª¿æŽãã¹ã¿ã€ã«åç §ãªãã§æè»ãªããã¹ãèªå°ã¹ã¿ã€ã«å¶åŸ¡ãå®çŸããã¿ãŒã²ããã¹ã¿ã€ã«ã®ç»åãçæããéã«ãå¯Ÿç §ã¢ãã«ãšæ¯èŒããŠå ã®ã³ã³ãã³ãæ§é ãããè¯ãç¶æã§ããããšã瀺ããŠããŸãã
忥åŸãã°ãšã³ã»ã¬ã»ãã³ããã¯è¯çºæè¡æéå ¬åžã«å ¥ç€ŸããŸããäžæµ·å€§åŠã§ã®3幎éãæ¯ãè¿ããšã圌ã¯åªåããŠåŠã³ãçå£ã«ç ç©¶ãè¡ããå°éèœåãé«ããå€ãã®è¯ãå人ãã¡ã³ã¿ãŒã«æµãŸããŸãããã°ãšã³ã»ã¬ã»ãã³ãããä»åŸã®éã®ãã§åå¿ãå¿ããã䜿åœãèžã«å»ã¿ãå°é£ãä¹ãè¶ããåé²ãç¶ããããšãé¡ã£ãŠããŸãã
è«æãªã³ã¯ïŒåºäºåœ¢ç¶ç©ºéŽç论ç¹åŸå¢åŒºçå°æ ·æ¬åŸåçææ¹æ³ç ç©¶äžåºçš
ã³ãŒããªã³ã¯ïŒhttps://github.com/P2i42/FAGStyle
ã°ãšã³ã»ã¬ã»ãã³ã¯ãé»ç«æ±ç§æå€§åŠã§åŠå£«å·ãååŸãã2022幎ããäžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ã§å°éå修士課çšãéå§ããŸãããç ç©¶ã°ã«ãŒãã«åå ããåŸã匵çãéè¶èãé³äŸšå·ã®åå çã®æå°ã®äžãæææç®æ å ±æœåºæ¹æ³ã®ç ç©¶ãè¡ãã以äžã®ç ç©¶ãå®äºããŸããïŒ
-
æææç®ã«ãããé·ãç³»åäŸåæ§ãè€éãªãšã³ãã£ãã£é¢ä¿ã®åé¡ã«å¯ŸåŠããããã«ãæå³åŒ·åã°ã©ããããã¯ãŒã¯ã¢ãã«ãææ¡ããè€åææã®æç®çºæåéã«é©çšããŸããããã®ã¢ãã«ã¯ãç°çš®ã°ã©ããæ§ç¯ããŠæå³çé¢é£æ§ã®ã¢ããªã³ã°ã匷åãããããã¯æ³šæã¡ã«ããºã ãå°å ¥ããŠé·ãç³»åã®åé¡ãå¹ççã«åŠçããåŸæ¥ã®ã¢ãã«ã®éçãå æããŸããããã«åºã¥ããŠã深局å¯åé¢ç³ã¿èŸŒã¿ãå©çšããŠã°ããŒãã«ããã³ããŒã«ã«ãªæå³çç¹åŸŽãèåããåçãšããžéã¿ã¡ã«ããºã ãšæ·±å±€ã¹ã³ã¢ãããã¯ãŒã¯ãçµã¿åãããŠããŒã衚çŸãšèªè粟床ãåäžãããè€éãªæèã«ãããææçšèªã®æå³çé¢ä¿ããã广çã«æããŸãã
-
äžè¬çãªææããã¹ãã«ããããšã³ãã£ãã£å¢çã®ãããŸãããé·ããšã³ãã£ãã£èªèã®å¹æãäžååãªåé¡ã«å¯ŸåŠããããã«ãå€ç²åºŠèåã°ã©ããããã¯ãŒã¯ã¢ãã«ãææ¡ããææç§åŠæç®åéã®åºæåè©èªèã¿ã¹ã¯ã«é©çšããŸããããã®ã¢ãã«ã¯ãå€ç²åºŠã®æå³çç¹åŸŽãšå¢çæé©åæŠç¥ãèåãããæ°ããã¢ãžã¥ãŒã«ãèšèšããŸããããŸããã²ãŒãèåãšã¯ãã¹ç²åºŠçžäºæ³šæãéããŠãç°ãªãã¹ã±ãŒã«ã®æå³çç¹åŸŽã®è¡šçŸèœåã匷åããŸããæ¬¡ã«ãæ¡ä»¶ä»ãã©ã³ãã ãã£ãŒã«ããšå¯Ÿæ¯åŠç¿ãçµã¿åãããŠå ±åèšç·Žãè¡ããããããã®å©ç¹ã掻ãããŠå¢çèªèã®ç²ŸåºŠãšé·ããšã³ãã£ãã£èªèã®æ§èœãå調çã«åäžãããŸãã
-
ææ¡ãããæç®çºææ¹æ³ãã«ãŒãã³ãã¡ã€ããŒè€åææã®æ§èœäºæž¬ãšå¿çšèšèšã«é©çšããŸãããææå®éšæç®ãçºæããååŠçæ§èœã«å¯æ¥ã«é¢é£ãã9ã€ã®éèŠãªç¹åŸŽãæœåºããå®éšãéããŠæç®çºæã®ææãæ§èœã¢ããªã³ã°ã«ãããå¿çšã®å¯èœæ§ãæ€èšŒããŸãããããã«ããŠãŒã¶ãŒãããŒã¿ãã¡ã€ã«ãã¢ããããŒãããã¢ãã«éžæãèšç·Žãçµæã®å¯èŠåãè¡ãããšããµããŒãããæææ§èœäºæž¬ã·ã¹ãã ãèšèšã»å®è£ ããææç ç©¶è ã«å¹ççã§äœ¿ããããæ§èœäºæž¬ããŒã«ãæäŸããŸããã
ã°ãšã³ã»ã¬ã»ãã³ããã¯åæ¥åŸãã¢ãªããã°ã«ãŒãã«å ¥ç€ŸãããœãããŠã§ã¢éçºã«åŸäºããŸããäžæµ·å€§åŠã®å€§åŠé¢çãšããŠã圌ã¯ç±å¿ã«åŠã³ãå°éç¥èãšç ç©¶èœåãé«ããå€ãã®è¯ãåž«ãåäººã«æµãŸããŸãããã°ãšã³ã»ã¬ã»ãã³ãããä»åŸã®éã®ãã§åå¿ãå¿ããã䜿åœãèžã«å»ã¿ãå°é£ãä¹ãè¶ããåé²ãç¶ããããšãé¡ã£ãŠããŸãã
è«æãªã³ã¯ïŒåºäºè¯ä¹æç¥çæææç®æææ¹æ³ç ç©¶
ã³ãŒããªã³ã¯ïŒhttps://github.com/han-yuexing/2025-thesis-zyl-code
çèŒãæ¬ç§åæ¥ã¯å»¶èŸºå€§åŠã2022幎9æããäžæµ·å€§åŠèšç®æ©å·¥åŠéšã§ä¿®å£«èª²çšãéå§ããç ç©¶ã°ã«ãŒãã«åå åŸãéè¶èææã®æå°ã®äžãèªç¶èšèªåŠçãªã©ã®é¢é£æè¡ãšå¿çšãåŠã³ã以äžã®ç ç©¶ãå®äºããŸããïŒ
-
å€§èŠæš¡èšèªã¢ãã«ã®ç§åŠæç®ã«ããããšã³ãã£ãã£æœåºã®å¯èœæ§ãåŒãåºãããã«ãæèã«äžè²«ãããšã³ãã£ãã£ã®æç€ºçãªã¢ãããŒã·ã§ã³ææ³ãšäºæ®µéã®ãã¬ãŒãã³ã°ææ³ãææ¡ããå€§èŠæš¡èšèªã¢ãã«ã®çæçåºåãšåœåãšã³ãã£ãã£èªèã¿ã¹ã¯ã®ç³»åã¢ãããŒã·ã§ã³ç¹æ§ã®éãã解決ããŸããæ¬¡ã«ããã¬ãŒãã³ã°æ®µéã¯ç£èŠåŸ®èª¿æŽãšçŽæ¥çãªå¥œã¿ã®æé©åã®2ã€ã®æ®µéã«åãããç£èŠåŸ®èª¿æŽæ®µéã§ã¯æ¢åã®ã¢ãããŒã·ã§ã³ããŒã¿ã§åºæ¬çãªãšã³ãã£ãã£èªèèœåãåŠç¿ããŸããçŽæ¥çãªå¥œã¿ã®æé©å段éã§ã¯ãã¢ãã«ã誀ããä¿®æ£ããããã®ãã广çãªã¬ã€ãã³ã¹ãæäŸããããã«ãè² ã®ãµã³ãã«æ§ç¯æã«ãšã³ãã£ãã£ã®å¢çãæ¡åŒµããã³åçž®ããç£èŠåŸ®èª¿æŽåŸã®æšè«çµæããã£ã«ã¿ãªã³ã°ããŠã«ããŽãªæ··ä¹±ãµã³ãã«ãçæããŸããæ£è² ãµã³ãã«ãã¢ã®å¥œã¿ã®å·®ãå©çšããŠå¶çŽã匷åããã¢ãã«ã®èª€å€å®ä¿®æ£èœåãåäžãããŸãã
-
ææç§åŠãçç©å»åŠã®ãããªé«åºŠã«å°éåãããé åãæ±çšã¢ãã«ã§æ±ãå Žåãäœé »åºŠã®å°éçšèªãå€ããååä»ãå®äœã®èªè粟床ãäžååã§ãããšããåé¡ã解決ããããã«ãæ¬è«æã§ã¯ãç°ãªããã¡ã€ã³èšèªã¢ãã«ãšãã¡ã€ã³åèªã¬ãã«ãã¯ãã«ãæå³çã«èåããããšã§ãç§åŠæç®ã®ããæ·±ãæå³çè§£ã匷åãããã¡ã€ã³èšèªã¢ãã«ã«åºã¥ãæå³èåææ³ãææ¡ããææç§åŠãçç©å»åŠåéã®è€éãªå°éåãããããã¹ãã«å¯ŸããŠãå®éšã«ãããã®æå¹æ§ãæ€èšŒãããæ¬ææ³ã®æå¹æ§ã¯ãææç§åŠãšçç©å»åŠåéã®è€éãªå°éããã¹ãã«å¯ŸããŠå®éšçã«æ€èšŒããããæåŸã«ãæ¬ææ³ãç¹å®ã®åéã«é©çšãã3çš®é¡ã®é«ç¡¬åºŠåéãèšèšããããšã§ãç§åŠçããã¹ããã€ãã³ã°ãšç ç©¶éçºã®æææ±ºå®æ¯æŽã«ãããå®çšç䟡å€ã瀺ãã
忥åŸãçèŒããã¯ç¶æ²ã¢ãã€ã«éä¿¡äŒç€Ÿã«å ¥ç€ŸããŸããçèŒããã¯äžæµ·å€§åŠã§ã®3幎éã®å€§åŠé¢ç掻ã®äžã§ãç±å¿ã«åŠã³ãç ç©¶ãããžã§ã¯ãã«åå ããŸãããè€éãªåé¡ã«å¯ŸããŠè¿ éã«åæãã广çãªè§£æ±ºçãææ¡ããèœåã瀺ããç¬ç«ããç ç©¶èœåãšé©æ°æèãæã£ãŠããŸããçèŒãããä»åŸã®éã®ãã§åå¿ãå¿ãããå°é£ãä¹ãè¶ããåé²ãç¶ããããšãé¡ã£ãŠããŸãã
è«æãªã³ã¯ïŒé¢åç§åŠæç®çåœåå®äœè¯å«ç ç©¶äžåºçš
ã³ãŒããªã³ã¯ïŒhttps://github.com/han-yuexing/2025-thesis-wh-code
æã ã®ããŒã ã¯ãåœéãžã£ãŒãã«ãExpert Systems With Applicationsã(IF:7.8ãäžç§é¢äžåºTop)ã«è«æ âA projection module based on the shape space theory for small-sample image processingâãçºè¡šããŸããããã®è«æã¯äžæµ·å€§åŠèšç®æ©å·¥åŠéšã第äžèè ãšãªããè¡å¹²ã第äžèè ãéè¶èãéä¿¡èè ãšãªã£ãŠããŸãã
âäºååŠç¿+埮調æŽâã®ãã©ãã€ã ã¯ãéãããããŒã¿ã»ããã«ãããç¥çµãããã¯ãŒã¯ã®ç»ååŠçã«æå¹ãªããŒã«ãæäŸããŸãããã®æ¹æ³ã¯ãå€§èŠæš¡ãªãœãŒã¹ããŒã¿ã»ããã§ã¢ãã«ãäºååŠç¿ãããããšã§ãã¿ãŒã²ããã®å°ããªããŒã¿ã»ããã®æ å ±äžè¶³ãè£ããŸããããããã¿ãŒã²ããããŒã¿ã»ãããããã«å°ããªãµã³ãã«ãµã€ãºã«çž®å°ããããšãæ¢åã®æ¹æ³ã¯ç§»è¡ã¢ãã«ã®æ§èœãç¶æããã®ãé£ãããªããå¹æãæ¥æ¿ã«æªåããŸãããã®æ¬ é¥ãå æããããã«ãæ¬è«æã§ã¯ã圢ç¶ç©ºéçè«ã«åºã¥ãæåœ±ã¢ãžã¥ãŒã«PMSSãææ¡ããå°ããªãµã³ãã«ã·ãŒã³ã«ãããç§»è¡ã¢ãã«ã®èœåã匷åããŸãã
æã ã¯ãŸãããœãŒã¹ããŒã¿ã»ããã§ã¢ãã«ãäºååŠç¿ããä¿åããŸããæ¬¡ã«ãäºååŠç¿ããã¢ãã«ã䜿çšããŠã¿ãŒã²ããããŒã¿ã»ããã®ç¹åŸŽãæœåºããŸãããããã®å ã ãŠãŒã¯ãªãã空éã«ãã£ãç¹åŸŽã¯ãPMSSãéããŠäºå圢ç¶ç©ºéã«æåœ±ãããåŸç¶ã®ãã¬ãŒãã³ã°ãè¡ãããŸããããã«ãåŠç¿ããã»ã¹ã«ã¯ã©ã¹èªè泚æã¡ã«ããºã ãå°å ¥ããç¹åŸŽè¡šçŸèœåã匷åããããšã§ãå°ããªãµã³ãã«ã¿ã¹ã¯ã«å¯Ÿããã¢ãã«ã®åŠçèœåãåäžãããŸãã10çš®é¡ã®ããã¯ããŒã³ãããã¯ãŒã¯ãš5ã€ã®ããŒã¿ã»ããã«ããã倧éã®å®éšã«ãããPMSSã®æå¹æ§ã蚌æãããŸãããCIFAR10ãCIFAR100ããã³ãã®å°ãµã³ãã«ãµãã»ããã§ãããã6%ã8%ããã³13%ã®ç²ŸåºŠåäžãå®çŸããŸãããPMSSã¯ãã©ã°ã¢ã³ããã¬ã€èšèšãæ¡çšããŠããããããã¯ãŒã¯ã¢ãŒããã¯ãã£ã倿ŽããããšãªããçŸå®äžçã®éãããããŒã¿ã·ã¹ãã ã«çŽæ¥é©çšã§ããŸããææ°ã®å€æ§äœåŠç¿ææ³ãããã¹ã転éåŠç¿ææ³ãšæ¯èŒããŠãPMSSã¯å°ããªãµã³ãã«ã¿ã¹ã¯ã®åŠçã«ãããŠæå ç«¯ã®æ§èœãéæããŸããã
è«æãªã³ã¯ïŒA projection module based on the shape space theory for small-sample image processing
ã³ãŒããªã³ã¯ïŒhttps://github.com/hg18855467337-del/PMSS
ç§ãã¡ã®ããŒã ã¯ãè«æ âDeep Learning-Based Framework for Efficient Design of Multicomponent é«ç¡¬åºŠé«ãšã³ããããŒåéã®å¹ççèšèšã®ããã®ãã£ãŒãã©ãŒãã³ã°ã«åºã¥ããã¬ãŒã ã¯ãŒã¯ããçºè¡šããã äžæµ·å€§åŠã³ã³ãã¥ãŒã¿ãŒå·¥åŠç§ãçé èè ãšãªããYuexing Hanã第äžèè ãHui Wangã第äºèè ãYi Liuã察å¿èè ãšãªã£ãã
ææç§åŠã®åéã§ã¯ãé«ãšã³ããããŒåéïŒHEAïŒããã®åªããç¹æ§ããæ³šç®ã®ç ç©¶ããŒããšãªã£ãŠãããããããèšå€§ãªåéçµæã®äžãã驿°æ§ãšä¿¡é Œæ§ãå Œãåããæé©èšèšãèŠåºãããšã¯ã倧ããªèª²é¡ã«çŽé¢ããŠãããåŸæ¥ã®è©Šè¡é¯èª€çãªææ³ã¯éå¹ççã§ãããçŽç²ã«ããŒã¿é§åçãªææ³ã§ã¯èšèšã®å®çšçãªæ§èœãä¿èšŒããããšã¯å°é£ã§ããããã®åé¡ã«å¯ŸåŠããããã«ãæã ã¯ã倿åãé«ç¡¬åºŠãé«ãšã³ããããŒåéã®èšèšããã»ã¹ãæé©åããããã«ãææãã¡ã€ã³ã®ç¥èãšããŒã¿é§åæè¡ãçµã¿åããããã£ãŒãã©ãŒãã³ã°ããŒã¹ã®ãã¬ãŒã ã¯ãŒã¯ãææ¡ããã
ãŸããMaterials Cascade Embedding (MCE)ã¢ãžã¥ãŒã«ãéçºããBiLSTM-CRFãããã¯ãŒã¯(MCE-BILSTM-CRF)ãšçµ±åããŠãéå»5幎éã«çºè¡šããã2,698ã®è«æãèªåçã«åæãã8,067ã®ããŒã¿ãã€ã³ããæœåºãããããŒã¿åæã«ææåéã®ç¥èãåãå ¥ããããšã§ãæ©æ¢°åŠç¿ããŒã¿ã»ããã®èšèšãšæ§ç¯ã®æéãšãªããå¯èœæ§ã®é«ãèŠçŽ ãšéèŠãªããã»ã¹æ¡ä»¶ãç¹å®ããã察象ãšãªãæç®ãæäœæ¥ã§èŠçŽã»ç §åããåŸã13ã®èŠçŽ ãå«ã硬床ããŒã¿ã»ãããæ§ç¯ãããããã«åºã¥ããŠãéºäŒçã¢ã«ãŽãªãºã ïŒGAïŒãšç²å矀æé©åïŒPSOïŒãçµã¿åããã2段éã®èšèšæŠç¥ã掻çšãã倿åã®é«ãšã³ããããŒåéãéçºãããç¬¬äžæ®µéã§ã¯åéã·ã¹ãã ãæ¢çŽ¢ããç¬¬äºæ®µéã§ã¯æåæ¯çãæé©åããããšã§ãæè¡é©æ°ãšæ§èœåäžãä¿é²ãããæã ã®åæã§ã¯ãSHAPç¹åŸŽã®æææ§ãšãã¢ãœã³çžé¢ä¿æ°ïŒPCCïŒãçµã¿åãããææåéã®ç¥èã«ãã£ãŠè£å®ããçºèŠãæ€èšŒããŠåéç³»ã®éžæãå°ãã æçµçã«ãæ¢åã®ããŒã¿ã»ãããšã¯ç°ãªã3çš®é¡ã®é«ãšã³ããããŒåéã®èšèšã«æåããå¹³åçžå¯Ÿç¡¬åºŠèª€å·®ã5%æªæºã«äºæž¬ããããšãã§ããŸããã
è«æãžã®ãªã³ã¯: Deep Learning-Based Framework for Efficient Design of Multicomponent High Hardness High Entropy Alloys
è«æãFast and Accurate Recognition of Perovskite Fluorescent Anti-Counterfeiting Labels Based on Lightweight Convolutional Neural NetworksããåœéåŠè¡èªACS Applied Materials & Interfaces (IF:8.3, CAS Region II)ã«æ²èŒãããŸããã 軜éç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã«åºã¥ãåœé ã©ãã«ãã ãã®è«æã®çé èè ã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿ãŒå·¥çšç§åŠåŠé¢ãçé èè ã¯Yuexing Hanã第2èè ã¯Shengqi Baoã第3èè ã¯Bozhi Shiãcorresponding authorã¯Qiaochuan Chenã§ããã
åœé 鲿¢æè¡ã¯ãæ å ±ã»ãã¥ãªãã£åéã«ãããŠåžžã«éèŠãªèª²é¡ã§ããã 確çéçšã«ããçæãããã©ã³ãã ãã¿ãŒã³ã§ããPUF(Physical Unclonable Function)ã©ãã«ã¯ããã®ç©çãã¿ãŒã³åºæã®ã©ã³ãã æ§ã«ãããåœé 鲿¢çãšããŠæå¹ã§ããã æ¬ç ç©¶ã§ã¯ã衚é¢åŒµåå¶çŽã«åºã¥ãé«ã¹ã«ãŒãããæ¶²æ»Žã¢ã¬ã€çææè¡ããå¶åŸ¡å¯èœãªåœ¢ç¶ãšãµã€ãºãæããã«ã«ã³ã²ãã€ãçµæ¶èã®èª¿è£œã®ããã«éçºããã PUFã©ãã«ã®ãã¯ã¹ãã£ãŒã¯ãã«ã«ã³ã²ãã€ãããçµæ¶ç²ã®ã©ã³ãã ãªååžãå©çšããŠæ§ç¯ãããã ä»ã®åœé 鲿¢ã©ãã«ãšæ¯èŒããŠãæ¬ç ç©¶ã®ã©ãã«ã¯èå ç¹æ§ãæããã ãã§ãªãããã€ã¯ãã¡ãŒãã«ãµã€ãºãäœã³ã¹ããé«ç¬Šå·åèœåãæãã倿®µéã®åœé 鲿¢ããµããŒãããã ããã«ãæ¬ç ç©¶ã§ã¯ãéšåç³ã¿èŸŒã¿ãããã¯ãŒã¯ïŒPaCoNetïŒã«åºã¥ã驿°çãªPUFèªèææ³ãå°å ¥ããèªè粟床ãšé床ã®é¢ã§åŸæ¥ã®ææ³ã®éçã«å¹æçã«å¯ŸåŠããŠããã æå€§60çš®é¡ã®ç°ãªããã¯ã圢ç¶ãšãŠããŒã¯ãªãã€ã¯ããã¯ã¹ãã£ãå«ãã«ã«ã³ãµã€ãããçµæ¶ãã£ã«ã ã®ããŒã¿ã»ãããå®éšçã«æ€èšŒããçµæãæ¬ç ç©¶ã®ææ³ã¯æå€§99.65ïŒ ã®èªè粟床ãéæããç»å1æãããã®èªèæéãããã0.177ç§ã«å€§å¹ ã«ççž®ããããšãã§ããåœé 鲿¢åéã«ããããããã®ã¿ã°ã®å¿çšã®å¯èœæ§ãæµ®ã圫ãã«ããã
è«æãžã®ãªã³ã¯: Fast and Accurate Recognition of Perovskite Fluorescent Anti-Counterfeiting Labels Based on Lightweight Convolutional Neural Networks
ç§ãã¡ã®ããŒã ã¯ãè«æããã®å Žèгå¯ã«åºã¥ãã©ã¹ãã«ãã³ãµã€ã倿 ã®çµ±èšãšè§£æããçºè¡šãããStatistics and Analysis of Lath Martensite Transformation based on in situ observation and video processing âãšããè«æãçºè¡šããã çé èè ã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿ãŒå·¥çšç§åŠåŠé¢ãçé èè ã¯Yuexing Hanãçé èè ã¯Ruiqi Liãçé èè ã¯Xiangyu Xuã§ããã
ææç§åŠã«ãããç ç©¶ææ³ã¯ã人工ç¥èœãç§åŠæ©åšã®çºéã«äŒŽããæ°ããªå€é©ãéãã€ã€ããã åŸæ¥ã®éæ¢ç»åã«åºã¥ãææç¹æ§ã®ç ç©¶æ¹æ³ãããåçãªåç»ã«ãã£ãŠææã®åŸ®çްæ§é ãå€åããéçšãæããã«ããæ¹æ³ãžã®è»¢æã¯ãç ç©¶ã®å¥¥è¡ããæ·±ããã ãã§ãªããããŒã¿åŠçã®å¹çãé£èºçã«åäžãããã ç¹ã«ééŒè£œé ã®åéã§ã¯ããªãŒã¹ããã€ããããã«ãã³ãµã€ããžã®çžè»¢ç§»ã®ç ç©¶ã¯ãææç¹æ§ãæé©åããããã«æ¥µããŠéèŠã§ããã
æ¬è«æã§ã¯ãéçç»åç ç©¶ã®éçãæç Žãããåçåç»ãçšããã¹ã©ãããã«ãã³ãµã€ãã®çžå€æ è§£ææ³ãææ¡ããã æ¬ææ³ã¯ãåã ã®ã¹ã©ãããã«ãã³ãµã€ãã®ç»åããŒã¿ãå¹ççã«åå²ã»æœåºãããã®å€åæ³åãåçåç»ã§è§£æããããšãã§ããã å€åœ¢ããã¹ã©ããã®æ°ã倧ãããé¢ç©ãæ¹åãå«ãããã€ãã®éèŠãªå±æ§ãã«ãŠã³ãããããšã«ããããã«ãã³ãµã€ãçžå€æ ã®åçç¹æ§ã®å æ¬çãªåæãéæããã ãã®æ¹æ³ã¯ãæ å ±æœåºå¹çãåäžãããã ãã§ãªãããã«ãã³ãµã€ãçžå€æ ã¡ã«ããºã ãæããã«ããééŒè£œé ããã»ã¹ãæé©åããããã®éèŠãªããŒã¿ãµããŒããæäŸããŸãã
ãã®çµæã¯ãç¹ã«ã¹ã©ãããã«ãã³ãµã€ãã®è€éãªåœ¢æ ãšæ¥éãªå€æ éçšã«çŽé¢ããå Žåãåçãããªç ç©¶ãããŒã¿åŠçã®å¹çãšç²ŸåºŠãå€§å¹ ã«æ¹åã§ããããšã瀺ããŠããã å°æ¥çã«ã¯ããã®æ¹æ³ãããå€ãã®ææç³»ã®ç ç©¶ã«å¿çšããææç¹æ§ã®æé©åãšããã»ã¹æ¹åãããã«æšé²ããããšèããŠããŸãã
ç§ãã¡ã®ããŒã ã¯ãè«æ ãAutomatic pipeline for information of curve graph in papers based on deep learning ããçºè¡šãããèªåãã€ãã©ã€ã³ããçºè¡šããã çé èè ã¯äžæµ·å€§åŠèšç®æ©å·¥çšç§åŠé¢ãçé èè ã¯Yuexing Hanã第2èè ã¯Jinhua Xiaãcorresponding authorã¯Qiaochuan Chenã§ããã
ææç§åŠãçç©å»åŠã®åéã§ããã çŸåšã®åŠè¡ããŒã¿ããŒã¹ããŒã«ã¯ãäž»ã«ããã¹ãæ å ±ã®ãã€ãã³ã°ã«éç¹ã眮ããŠãããã°ã©ãããã£ãŒãã«ç€ºããã貎éãªæ å ±ã¯ç¡èŠãããŠããã 倧éã®æç®ããæ å ±ãæœåºããããšã§ãç ç©¶è ã¯éçºã®çŸç¶ãè¿ éã«ææ¡ããããšãã§ããã æç®ã¯æ§ã ãªåœ¢åŒã®ããŒã¿ã®æ ãæã§ãããã»ãšãã©ã®ç ç©¶è ã¯ããã¹ãã³ã³ãã³ãã«ã®ã¿æ³šç®ããŠããã ç¹ã«ã°ã©ãã®ããã«ãä»ã®ããŒã¿ã§ã¯è¡šçŸãããªãéèŠãªæ°å€æ å ±ãå€ãå«ãŸããŠããã æ¬çš¿ã§ã¯ãæç®äžã®ã°ã©ãããæ å ±ãæœåºããææ³ãææ¡ããã ãã®ææ³ã§ã¯ãã°ã©ããšããã¹ãã®äž¡æ¹ãããæ²ç·ã°ã©ãã®æ°å€ãšè»žå®äœãæœåºããããšãã§ããã ãŸããYolov5sãçšããŠæç®ããæ²ç·ã°ã©ããåãåºãã æ¬¡ã«ãSentence-BertãæäœããŠãåæ²ç·ã°ã©ãã«å¯Ÿå¿ããæ£ç¢ºãªã¿ã€ãã«ããã¹ããç §åããã ã¿ã€ãã«ããã¹ããåŸãåŸãSCI-BertãçšããŠæ²ç·ã°ã©ãã®X軞ãšY軞ã®ååãæœåºããã åæã«ãå åŠåŒæåèªèïŒOCRïŒãªã©ã®æè¡ã䜿çšããŠãã°ã©ãã«åæ ãããæ°å€ããŒã¿ãèªåçã«è§£æããã ããã«ãããã©ãŒãã³ã¹ãåäžãããããã«å€ãã®ååãçšããããŠããã Elsevierã®6042ã®è«æãããªãããŒã¿ã»ãããçšããŠãåã¹ããããæ€èšŒããã æ¬ææ³ãçšããå Žåãã°ã©ãæ€åºã®ç²ŸåºŠã¯96.4%ãã¿ã€ãã«ãããã³ã°ã®ç²ŸåºŠã¯95.8%ã§ãããããããåæã¢ãã«ãäžåããæ¬ææ³ã®æå¹æ§ã蚌æãããã ãšã³ãã£ãã£ã®æœåºç²ŸåºŠã¯76.3%ãæ°å€ããŒã¿ã®æœåºç²ŸåºŠã¯28.2%ã§ãã£ãã å®éšçµæãããæ¬ææ³ãæç®ããæ²ç·å³ã®å€§èŠæš¡ãªç¥èæœåºãå®çŸã§ããããšã瀺ãããã DeepL.comïŒç¡æçïŒã§ç¿»èš³ããŸããã
è«æãžã®ãªã³ã¯: Automatic pipeline for information of curve graphs in papers based on deep learning