è¡å¬æ¢ ïŒãããšãããïŒã女æ§ã西å®å·¥æ¥å€§åŠã³ã³ãã¥ãŒã¿ç§åŠã»å·¥åŠéšããŒã¿ç§åŠã»ããã°ããŒã¿æè¡å°æ»ã§åŠå£«å·ãååŸãçŸåšã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿ç§åŠã»æè¡å°æ»ã®ä¿®å£«èª²çšã«åšç±ãè¶£å³ãåºããæ§æ Œã¯ç±å¿ã§å€§ããã§ãååãã§ãããä»åŸã®åŠç¿æéã«ãããŠãåç©«ãåããªãèãããšãåãããšãã人çã®æ Œèšãå®è·µããçãšå©ãåããªããå ±ã«æé·ããŠããããã
éŸæèãç·æ§ãæµæ±å·¥æ¥å€§åŠã³ã³ãã¥ãŒã¿ç§åŠæè¡åŠé¢ã»ãœãããŠã§ã¢åŠé¢ã«ãŠãœãããŠã§ã¢å·¥åŠå°æ»ã忥ãçŸåšã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿åŠé¢ã®ä¿®å£«èª²çšã«åšç±ãç©æ¥µçã§æ¥œèгçã責任æã匷ããæ®æ®µã¯ãããã³ãã³ããµãã«ãŒã楜ãã¿ãæã«ã¯ã©ã³ãã³ã°ã§ãªã©ãã¯ã¹ããã倧åŠé¢ã§ã¯å°éèœåãšç ç©¶æ°Žæºãé«ããçãšå ±ã«æé·ããŠããããã
äœç¿ãç·æ§ãäžå倧åŠã³ã³ãã¥ãŒã¿ç§åŠæè¡åŠéšåæ¥ãçŸåšãäžæµ·ç¬¬äºå·¥æ¥å€§åŠé»åæ å ±åŠå°æ»ã«ãŠå°éè·ä¿®å£«èª²çšã«åšç±äžãæ§æ Œã¯ç©æ¥µçã§æ¥œèгçãæãã瀟亀çãè¶£å³ã¯å€å²ã«ããããæ è¡ã奜ãã倧åŠé¢åšåŠäžã«èªèº«ã®èœåãé«ããçãšå ±ã«æé·ããªããåŠãã§ãããããšèããŠããã
åæºãç·æ§ãè¯åé»å倧åŠã³ã³ãã¥ãŒã¿ç§åŠæè¡åŠéšåæ¥ãçŸåšãäžæµ·å€§åŠã³ã³ãã¥ãŒã¿ç§åŠæè¡å°æ»ã«ãŠä¿®å£«èª²çšã«åšç±äžãæ§æ Œã¯ç©æ¥µçã§æ¥œèгçãè¶£å³ã¯ã©ã³ãã³ã°ã鳿¥œéè³ãã²ãŒã ãªã©ã倧åŠé¢åšåŠäžã«å ±ã«åŠã³åªåã§ããè¯ãå人ã«åºäŒããä»åŸã®ç掻ã«ãããŠåŠæ¥ãšç掻ã®ãã©ã³ã¹ãåããªãããåªåãéãèœåãé«ããå ±ã«æé·ããŠãããããšèããŠããã
æäºçïŒã ããããïŒãç·æ§ãå®éœåŠé¢ã³ã³ãã¥ãŒã¿ã»æ°åŠåŠéšIoTå·¥åŠå°æ»åæ¥ãçŸåšãäžæµ·ç¬¬äºå·¥æ¥å€§åŠé»åæ å ±åŠå°æ»ä¿®å£«èª²çšåšç±ãç©éãã§èœã¡çããæ§æ Œãè¯å¥œãªã¡ã³ã¿ã«ãæã¡ãåšå²ã®äººéé¢ä¿æ§ç¯ã«é·ãããåŠç¿ææ¬²ãé«ãã匷ãåäžå¿ãæã¡ãä»äºã«ã¯çæ¯ãã€è²¬ä»»æãæã£ãŠåãçµããããŒã ã¯ãŒã¯ãéèŠããæããæ¥œèгçã§ååããªæ§æ Œãå°é£ã«ãèãå¿ã¶ããšãã§ããã
忢èïŒãšã ãããïŒã¯ãé·æ¥å·¥æ¥å€§åŠã³ã³ãã¥ãŒã¿ç§åŠã»å·¥åŠé¢æ å ±ã»ãã¥ãªãã£å°æ»ã忥åŸãçŸåšäžæµ·å€§åŠã³ã³ãã¥ãŒã¿åŠé¢ã«ãŠä¿®å£«èª²çšã«åšç±äžãæããååããªæ§æ Œã§ãæ®æ®µã¯åçæ®åœ±ãåžäŒé²è¡ãè¶£å³ãšããŠããã倧åŠé¢ã§ã¯ç ç©¶èœåãšå調æ§ãé«ãããšåæã«ãå¥åº·çãªçæŽ»ç¿æ £ã身ã«ã€ããç 究宀ã®ä»²éãšå ±ã«æé·ããŠãããããšèããŠããã
çå®è¿ªãç·æ§ãæµæ±å·¥æ¥å€§åŠã§åŠå£«å·ãååŸåŸãçŸåšäžæµ·å€§åŠã§ã³ã³ãã¥ãŒã¿ç§åŠæè¡å°æ»ã®ä¿®å£«èª²çšã«åšç±äžãæ§ã ãªã¹ããŒãã奜ããããã¹ã±ããããŒã«ãšãµãã«ãŒã¯åŸæã§ã¯ãªããèª å®ã§ç±å¿ãªäººæã§ãä»åŸå¿ãåãããã仲éãšåºäŒããå ±ã«ç ç©¶èœåãé«ããå ±ã«æé·ããŠãããããšèããŠããã
åšé¯ïŒãã ãã»ããïŒã女æ§ãæ±è¥¿åž«ç¯å€§åŠã³ã³ãã¥ãŒã¿æ å ±å·¥åŠé¢ã³ã³ãã¥ãŒã¿ç§åŠæè¡å°æ»åæ¥ãçŸåšãäžæµ·å€§åŠã«ãŠã³ã³ãã¥ãŒã¿ç§åŠæè¡å°æ»ã®ä¿®å£«èª²çšã«åšç±äžãæ§æ Œã¯æŽ»çºã§æããæãããã°ãå·éã§å åçãªæããããæã æœè±¡çãªããšãèããã®ã奜ããæ®æ®µã¯åçãã©ã³ãã³ã°ãã²ãŒã ãæ¥œããã倧åŠé¢ç掻ãéããŠçãšå ±ã«æé·ããå¿ãåããããå人ãåŸãããããšãé¡ã£ãŠããã
ç§ãã¡ã®ããŒã ã¯ãInformation SciencesãïŒã€ã³ãã¯ããã¡ã¯ã¿ãŒïŒ6.8ãäžåœç§åŠé¢QSCIã©ã³ã¯IIïŒã«è«æãAgricultural object detection in complex environments via co-attention and self-knowledge distillationããçºè¡šããŸãããæ¬è«æã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠã»ç§åŠåŠé¢ãçé æ©é¢ãšãã
蟲æ¥å¯Ÿè±¡ç©æ€åºã¯ãã¹ããŒã蟲æ¥ãèªååç©«ãªã©ã®å¿çšã«ãããäžæ žã¿ã¹ã¯ã§ãããããããè€éãªç°å¢äžã§ã¯ãç §æã®å€åãèæ¯å¹²æžãæå®ã®é®èœãªã©ã®èŠå ã«ãããæ€åºç²ŸåºŠãäœäžããããšãå€ãããã®åé¡ã解決ãããããæ¬è«æã§ã¯å調泚æïŒCo-AttentionïŒãšèªå·±èžçïŒSelf-DistillationïŒãçµã¿åãããå¹ççãªæ€åºãã¬ãŒã ã¯ãŒã¯ãææ¡ããè€éãªã·ããªãªã«ããã蟲æ¥å¯Ÿè±¡ç©æ€åºã®ç²ŸåºŠãšãªã¢ã«ã¿ã€ã æ§èœã广çã«åäžãããã
å ·äœçã«ã¯ããã«ãã¹ã±ãŒã«ç¹åŸŽèååéã¿ä»ãã¢ãžã¥ãŒã«ïŒMulti-scale Feature Fusion Re-weighting Module, MS-FFRMïŒãææ¡ãããã«ãã¹ã±ãŒã«ç¹åŸŽèåèœåã匷åããããšã§ãç°ãªããµã€ãºã®æå®ã«å¯Ÿããæ€åºç²ŸåºŠãåäžããããåæã«ãå調泚æãã³ãŒããŒïŒCo-Attention DecoderïŒãå°å ¥ããã¯ãã¹ã¢ãã³ã·ã§ã³ãšèªå·±ã¢ãã³ã·ã§ã³ã®å©ç¹ãçµã¿åãããããšã§ãã¿ãŒã²ããã¯ãšãªã®çžäºäœçšæ¹åŒãæé©åããã¢ãã«ãé®èœãéãªãåãã¿ãŒã²ãããããé©åã«åŠçã§ããããã«ãããããã«ãéå±€çèªå·±èžçïŒHierarchical Self-DistillationïŒã¡ã«ããºã ãæ§ç¯ãããã³ãŒãå éšã®ç°ãªãå±€éã§ã®ç¥èäŒéãå®çŸããããšã§ã空éèªèãšäœçœ®ç¹å®ã«ãããé 奿§ãåäžãããã4ã€ã®æå®æç床æ€åºããŒã¿ã»ããã«ãããå®éšã«ãããæ¬ææ³ã®æå¹æ§ãå®èšŒãããïŒãããããŒã¿ã»ããã§75.4%ã®ç²ŸåºŠãéæãå®ç°å¢ãããããŒã¿ã»ããã§52.7%ãã€ããŽããŒã¿ã»ããã§41.5%ãFruitRipenessããŒã¿ã»ããã§87.1%ãéæããã
è«æãªã³ã¯ïŒAgricultural object detection in complex environments via co-attention and self-knowledge distillation
åæšåžããã¯ãæŠæŒ¢çç©å·¥çšåŠé¢ã§åŠå£«èª²çšãä¿®äºãã2022幎ããäžæµ·å€§åŠèšç®æ©å·¥åŠäžç§åŠåŠé¢ã«ãŠåŠè¡å修士課çšã«åšç±ããŸãããç 究宀ã«å å ¥ããŠããã¯ãåŒµçææã»éè¶èææã»é³äŸšå·ææã®ãæå°ã®ããšãèªç¶èšèªåŠçã®åéã§ç ç©¶ãè¡ãã以äžã®ææãåããŸããã
æ¢åã®åºæè¡šçŸæœåºïŒNERïŒææ³ã«ãããŠé·ã¹ãã³è¡šçŸã«ååãªæå³æ å ±ãäžè¶³ããŠãããšããåé¡ã«å¯ŸããŠãå¶æ°ç³ã¿èŸŒã¿ã«åºã¥ãã¹ãã³è¡šçŸåŒ·åã¢ãžã¥ãŒã«ãææ¡ããŸãããæ¬ã¢ãžã¥ãŒã«ã¯ãšã³ãã£ãã£ã¹ãã³å éšã®æå³æ å ±ã广çã«æããé·ã¹ãã³ã®ç¹åŸŽè¡šçŸã匷åããé·ã¹ãã³èªèã®æ§èœãåäžãããŸããã
æ¢åã®å¯Ÿæ¯åŠç¿ã«åºã¥ãNERãã¬ãŒã ã¯ãŒã¯ãåäžã®å¯Ÿæ¯æ¬¡å ã«éå®ããããšããå¶çŽã«å¯ŸããŠãã¹ãã³ãšã«ããŽãªã®äºé察æ¯åŠç¿ç®æšãå°å ¥ããŸãããã¹ãã³æ¬¡å ã®ã¿ãæé©åããæ¹æ³ãšæ¯èŒããŠããšã³ãã£ãã£ã«ããŽãªã®è奿§ã«åªãã衚çŸãåŠç¿ããããšãã§ããŸãããããã«ãã«ããŽãªåŽã§ã¯äºååŠç¿æžã¿èšèªã¢ãã«ã®ä»£ããã«è»œéãªåŠç¿å¯èœåã蟌ã¿å±€ãæ¡çšããæ§èœãç¶æãã€ã€ã¢ãã«ã®å¹çãåäžãããŸããã
æ å ±æœåºææ³ã«ãããŠãµãã¿ã¹ã¯éã®çžäºäœçšãäžååã§ãããšããéçã«å¯ŸããŠãç¥èç§»è»¢ææ³ãææ¡ããŸãããããã¯ã察æ¯åŠç¿ã«åºã¥ãNERã¢ãã«ã®ãã©ã¡ãŒã¿ãé¢ä¿æœåºã¢ãã«ãžç§»è»¢ããããšãç®çãšããŠããŸããå ·äœçã«ã¯ãNER段éã§èšç·Žãããããã¹ããšã³ã³ãŒããåå©çšããããšã§ããšã³ãã£ãã£ã®æèæ å ±ããã广çã«ç¬Šå·åã§ããããã«ããŸããããŸããã«ããŽãªãšã³ã³ãŒãã®ç§»è»¢ã«åºã¥ãã«ããŽãªèªèèåã¢ãžã¥ãŒã«ãå°å ¥ããé¢ä¿æœåºæ®µéã«ããããšã³ãã£ãã£ã«ããŽãªã®èªèèœåã匷åããŸããããããäºã€ã®ç§»è»¢ã¡ã«ããºã ã®ååã«ããããšã³ãã£ãã£é¢ä¿æœåºã®æ§èœãåäžããŸããã
忥åŸãåæšåžããã¯é è±ç§ææéå ¬åžã«å ¥ç€ŸãããœãããŠã§ã¢éçºã®ä»äºã«åŸäºããŸããäžæµ·å€§åŠã§ã®å€§åŠé¢ç掻ã«ãããŠã圌ã¯çå®ã«ç ç©¶ãé²ããå°éçç¥èãšç ç©¶èœåãçµ¶ããé«ãããŸãå€ãã®åªããåž«ãåäººã«æµãŸããè±ããªçµéšãåŸãŸãããããããã®éã®ãã«ãããŠããçæ³ãèžã«ãå°ã«è¶³ãã€ããå°é£ãæããã忢ã«åé²ãç¶ããããšãé¡ã£ãŠããŸãã
è«æãªã³ã¯ïŒå¯Ÿæ¯åŠç¿ãšç¥è移転ã«åºã¥ãæ å ±æœåºææ³ã®ç ç©¶
ã³ãŒããªã³ã¯ïŒhttps://github.com/han-yuexing/2025-thesis-lcf-code
ããªã»ã·ã§ã³ããŒã¯ãäžæµ·å€§åŠã§åŠå£«å·ãååŸãã2022幎ããäžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ã§åŠè¡å修士課çšãéå§ããŸãããããªã»ã·ã§ã³ããŒã¯åŠéš4幎çã®æããéè¶èç 究宀ã«åå ããç»ååŠçã«é¢é£ããæè¡ãšå¿çšãç ç©¶ããŠããŸãããéå çã®äžå¯§ãªæå°ã®äžã以äžã®ç ç©¶ãç¶ç¶ããçºå±ãããŸããïŒ
-
æ©èœæ§ææç»åã«å«ãŸããå€éå±€ç¹åŸŽã®è€éæ§ã«éã¿ãŠãæ¹è§£ç³PUFåœé 鲿¢ã©ãã«ã®çèŽãäºæž¬ãã課é¡ã解決ããããã«ãåå³°æ§ç¹åŸŽãã«ãããªã³ã°ã«åºã¥ãè»œéæ·±å±€åŠç¿æ³ãææ¡ãããç¹åŸŽãã«ãããªã³ã°æŠç¥ã¯ãå·šèŠçç¹åŸŽãšåŸ®èŠçç¹åŸŽã®åŠç¿ãç¬ç«ããæ®µéã«åé¢ããç¹åŸŽã®ç°ãªãå±€éã®å¹²æžãäœæžãããé«å¹çãšäœé å»¶ã®èŠæ±ãæºããããã«ã軜éãªçºæ£ç³ã¿èŸŒã¿ãããã¯ãŒã¯ãèšèšããããã®ã³ã¢ãšãªãçºæ£ç³ã¿èŸŒã¿ã¡ã«ããºã ãèšç®è€é床ãå€§å¹ ã«äœæžãããåæã«ãã¯ã©ã¹éè·é¢ãå¢å ãããã¯ã©ã¹å å·®ãæžå°ãããããšã§ãç¹åŸŽéã®èå¥èœåãé«ããããã«ãäœåãªè§åºŠå¢çæå€±é¢æ°ãçšãããæªç¥ãµã³ãã«ã®å¹æçãªæ£åŽãéæããããã«ã髿¬¡å 倿§äœç©ºéã«ãããæž¬å°ç·è·é¢ã«åºã¥ããŠãµã³ãã«ã®çåœãäºæž¬ããæž¬å°ç·ã¡ããªãã¯ãææ¡ããã
-
æ©èœæ§ææã®ãã«ãã¢ãŒãã«ãªç°çš®ããŒã¿ç¹åŸŽã®èåãå°é£ã§ãããšããåé¡ã«çç®ããã¢ã«ã®ã³é žã«ã«ã·ãŠã /ã°ã©ãã§ã³è€åææã®ç¹æ§ãäºæž¬ãããšãã課é¡ã解決ããããã«ããã«ãã¢ãŒãã«ç¹åŸŽèåã«åºã¥ã軜éãªãã£ãŒãã©ãŒãã³ã°ææ³ãææ¡ãããããŒãã«é§ååã®ç¹åŸŽèåãããã¯ãŒã¯ãèšèšããããšã«ãããç»åãšããŒãã«ãšãã2ã€ã®ç°çš®ããŒã¿ãœãŒã¹ã广çã«çµ±åãããããã®ãããã¯ãŒã¯ã«ã¯2ã€ã®ã³ã¢ã¢ãžã¥ãŒã«ãå«ãŸããïŒãã©ãŒã èªå°åèŠèŠçæå³åŒ·èª¿ã¢ãžã¥ãŒã«ãšã²ãŒãåç¹åŸŽèåã¢ãžã¥ãŒã«ã§ãããããŒãã«èªå°åèŠèŠçæå³åŒ·èª¿ã¢ãžã¥ãŒã«ã¯ãããŒãã«æ å ±ãçšããŠãæ·±ãã¯ãã¹ã¢ãŒãã«ã¢ã©ã€ã¡ã³ããšåŒ·èª¿ã®ããã®èŠèŠçç¹åŸŽåŠç¿ãèªå°ããã²ãŒãããç¹åŸŽèåã¢ãžã¥ãŒã«ã¯ãã¯ãã¹ã¢ãã³ã·ã§ã³ãšã²ãŒãã£ã³ã°ã¡ã«ããºã ã«ããã广çãªã¢ãŒãã«éçžäºäœçšãã¢ã©ã€ã¡ã³ããé©å¿çéã¿ä»ãèåãå®è¡ãããäžæ¹ãèšç®å¹çã確ä¿ããããã«ããããã¯ãŒã¯ã¯ã·ã£ã³ãç³ã¿èŸŒã¿ããã³ããªã©ã®è»œéèšèšãæ¡çšããŠããã
ããªã»ã·ã§ã³ããŒã¯ãäžæµ·å€§åŠã§ã®3幎éã®å€§åŠé¢ç掻ã®äžã§ãåªåããŠåŠã³ãçå£ã«ç ç©¶ãè¡ããå°éç¥èãé«ããå€ãã®è¯ãå人ãã¡ã³ã¿ãŒã«æµãŸããŸãããããªã»ã·ã§ã³ããŒãä»åŸã®éã®ãã§åå¿ãå¿ããã䜿åœãèžã«å»ã¿ãå°é£ãä¹ãè¶ããåé²ãç¶ããããšãé¡ã£ãŠããŸãã
è«æãªã³ã¯ïŒæ©èœææããŒã¿ã®ç¹åŸŽåŠçãšäºæž¬æ¹æ³ã«é¢ããç ç©¶
ã°ãšã³ã»ã¬ã»ãã³ã¯ãäžæµ·å€§åŠã§åŠå£«å·ãååŸãã2022幎9æããäžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ã§ä¿®å£«èª²çšãéå§ããŸãããç ç©¶ã°ã«ãŒãã«åå ããåŸãéè¶èå çã®æå°ã®äžã圢ç¶ç©ºéçè«ãç»åçæã«é¢ããæè¡ãšå¿çšãåŠã³ãŸãããéå çã®äžå¯§ãªæå°ã®äžã以äžã®ç ç©¶ãè¡ããŸããïŒ
-
ç»åçæã¢ãã«ããã¬ãŒãã³ã°ãµã³ãã«ãäžè¶³ããŠããå Žåãé©åãªäºåãã¬ãŒãã³ã°ã¢ãã«ããªãå Žåã«çŽé¢ãã課é¡ã«å¯ŸåŠããããã«ãäºå圢ç¶ç©ºéã®æž¬å°æ²é¢æ å ±è»¢éã«åºã¥ãç»åçææ¹æ³ãææ¡ããŸãããã®æ¹æ³ã¯ãã¢ãã«ãéåžžã«å°ãªããµã³ãã«ååžã广çã«åŠç¿ããã®ãé£ãããšããããã«ããã¯ãå æããé«å質ã§å€æ§ãªç»åãçæããããšãç®çãšããŠããŸãããã®ã³ã¢ããã»ã¹ã¯æ¬¡ã®ãšããã§ãããŸããå°æ°ã®ãµã³ãã«ã®æ·±å±€ç¹åŸŽãæœåºãããããã®ç¹åŸŽã䜿çšããŠäºå圢ç¶ç©ºéã«æž¬å°æ²é¢ãæ§ç¯ããéç·åœ¢ç¹åŸŽåŒ·åãè¡ããŸããæ¬¡ã«ã匷åãããç¹åŸŽã«åºã¥ããŠæ¬äŒŒãœãŒã¹ãã¡ã€ã³ãæ§ç¯ããè±å¯ãªããŒã¿ååžãã·ãã¥ã¬ãŒãããæ¬äŒŒãœãŒã¹ãã¡ã€ã³ããã¿ãŒã²ãããã¡ã€ã³ãžã®æ å ±è»¢éãè¡ããŸããæçµçã«ãæ å ±è»¢éæ®µéã§è£éç£èŠãšæ£ååå¶çŽãé©çšããŠæé©åããŸããå®éšã«ãããæ¢åã®æ¹æ³ãšæ¯èŒããŠããã®æ¹æ³ã¯å€é åããŒã¿ã»ããã§çæç»åã®å質ã詳现ã®è±ãããããã³å€æ§æ§ãå€§å¹ ã«åäžãããã¢ãŒã厩å£ã广çã«ç·©åããçæç»åãäžæµã¿ã¹ã¯ãæ¯æŽããå¯èœæ§ã瀺ããŸããã
-
ããã¹ãèªå°åãŒãã·ã§ããç»åã¹ã¿ã€ã«è»¢éã¿ã¹ã¯ã®èª²é¡ã«å¯ŸåŠããããã«ãäºå圢ç¶ç©ºéã«ãããæž¬å°æ²é¢ç¹åŸŽåŒ·åã«åºã¥ããŒãã·ã§ããã¹ã¿ã€ã«è»¢éæ¹æ³ãææ¡ããŸãããã®æ¹æ³ã¯ãå€éšã®æ°ããã¹ã¿ã€ã«æ å ±ãäºåãã¬ãŒãã³ã°ã¢ãã«ã«å¹ççã«æ³šå ¥ããã¹ã¿ã€ã«ã®äžè²«æ§ãšã³ã³ãã³ãã®æ£ç¢ºæ§ã確ä¿ããããšãç®çãšããŠããŸããå ·äœçã«ã¯ããã®æ¹æ³ã¯æž¬å°æ²é¢ç¹åŸŽåŒ·åã®èãæ¹ãäºåãã¬ãŒãã³ã°æ¡æ£ã¢ãã«ã«åºã¥ãã¹ã¿ã€ã«è»¢éãã¬ãŒã ã¯ãŒã¯ã«é©çšããã¹ã©ã€ãã£ã³ã°ãŠã£ã³ããŠã¯ãããã³ã°ãçµã¿åãããŠå±ææ å ±ãåŠçããæž¬å°æ²é¢ç¹åŸŽåŒ·åã¢ãžã¥ãŒã«ãå©çšããŠäºå圢ç¶ç©ºéã«ãããã¹ã¿ã€ã«ãšã³ã³ãã³ãç¹åŸŽã®å¹æçãªèåãä¿é²ããŸããå®éšçµæã¯ããã®æ¹æ³ã远å ã®ã¢ãã«åŸ®èª¿æŽãã¹ã¿ã€ã«åç §ãªãã§æè»ãªããã¹ãèªå°ã¹ã¿ã€ã«å¶åŸ¡ãå®çŸããã¿ãŒã²ããã¹ã¿ã€ã«ã®ç»åãçæããéã«ãå¯Ÿç §ã¢ãã«ãšæ¯èŒããŠå ã®ã³ã³ãã³ãæ§é ãããè¯ãç¶æã§ããããšã瀺ããŠããŸãã
忥åŸãã°ãšã³ã»ã¬ã»ãã³ããã¯è¯çºæè¡æéå ¬åžã«å ¥ç€ŸããŸããäžæµ·å€§åŠã§ã®3幎éãæ¯ãè¿ããšã圌ã¯åªåããŠåŠã³ãçå£ã«ç ç©¶ãè¡ããå°éèœåãé«ããå€ãã®è¯ãå人ãã¡ã³ã¿ãŒã«æµãŸããŸãããã°ãšã³ã»ã¬ã»ãã³ãããä»åŸã®éã®ãã§åå¿ãå¿ããã䜿åœãèžã«å»ã¿ãå°é£ãä¹ãè¶ããåé²ãç¶ããããšãé¡ã£ãŠããŸãã
è«æãªã³ã¯ïŒåºäºåœ¢ç¶ç©ºéŽç论ç¹åŸå¢åŒºçå°æ ·æ¬åŸåçææ¹æ³ç ç©¶äžåºçš
ã³ãŒããªã³ã¯ïŒhttps://github.com/P2i42/FAGStyle
ã°ãšã³ã»ã¬ã»ãã³ã¯ãé»ç«æ±ç§æå€§åŠã§åŠå£«å·ãååŸãã2022幎ããäžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ã§å°éå修士課çšãéå§ããŸãããç ç©¶ã°ã«ãŒãã«åå ããåŸã匵çãéè¶èãé³äŸšå·ã®åå çã®æå°ã®äžãæææç®æ å ±æœåºæ¹æ³ã®ç ç©¶ãè¡ãã以äžã®ç ç©¶ãå®äºããŸããïŒ
-
æææç®ã«ãããé·ãç³»åäŸåæ§ãè€éãªãšã³ãã£ãã£é¢ä¿ã®åé¡ã«å¯ŸåŠããããã«ãæå³åŒ·åã°ã©ããããã¯ãŒã¯ã¢ãã«ãææ¡ããè€åææã®æç®çºæåéã«é©çšããŸããããã®ã¢ãã«ã¯ãç°çš®ã°ã©ããæ§ç¯ããŠæå³çé¢é£æ§ã®ã¢ããªã³ã°ã匷åãããããã¯æ³šæã¡ã«ããºã ãå°å ¥ããŠé·ãç³»åã®åé¡ãå¹ççã«åŠçããåŸæ¥ã®ã¢ãã«ã®éçãå æããŸããããã«åºã¥ããŠã深局å¯åé¢ç³ã¿èŸŒã¿ãå©çšããŠã°ããŒãã«ããã³ããŒã«ã«ãªæå³çç¹åŸŽãèåããåçãšããžéã¿ã¡ã«ããºã ãšæ·±å±€ã¹ã³ã¢ãããã¯ãŒã¯ãçµã¿åãããŠããŒã衚çŸãšèªè粟床ãåäžãããè€éãªæèã«ãããææçšèªã®æå³çé¢ä¿ããã广çã«æããŸãã
-
äžè¬çãªææããã¹ãã«ããããšã³ãã£ãã£å¢çã®ãããŸãããé·ããšã³ãã£ãã£èªèã®å¹æãäžååãªåé¡ã«å¯ŸåŠããããã«ãå€ç²åºŠèåã°ã©ããããã¯ãŒã¯ã¢ãã«ãææ¡ããææç§åŠæç®åéã®åºæåè©èªèã¿ã¹ã¯ã«é©çšããŸããããã®ã¢ãã«ã¯ãå€ç²åºŠã®æå³çç¹åŸŽãšå¢çæé©åæŠç¥ãèåãããæ°ããã¢ãžã¥ãŒã«ãèšèšããŸããããŸããã²ãŒãèåãšã¯ãã¹ç²åºŠçžäºæ³šæãéããŠãç°ãªãã¹ã±ãŒã«ã®æå³çç¹åŸŽã®è¡šçŸèœåã匷åããŸããæ¬¡ã«ãæ¡ä»¶ä»ãã©ã³ãã ãã£ãŒã«ããšå¯Ÿæ¯åŠç¿ãçµã¿åãããŠå ±åèšç·Žãè¡ããããããã®å©ç¹ã掻ãããŠå¢çèªèã®ç²ŸåºŠãšé·ããšã³ãã£ãã£èªèã®æ§èœãå調çã«åäžãããŸãã
-
ææ¡ãããæç®çºææ¹æ³ãã«ãŒãã³ãã¡ã€ããŒè€åææã®æ§èœäºæž¬ãšå¿çšèšèšã«é©çšããŸãããææå®éšæç®ãçºæããååŠçæ§èœã«å¯æ¥ã«é¢é£ãã9ã€ã®éèŠãªç¹åŸŽãæœåºããå®éšãéããŠæç®çºæã®ææãæ§èœã¢ããªã³ã°ã«ãããå¿çšã®å¯èœæ§ãæ€èšŒããŸãããããã«ããŠãŒã¶ãŒãããŒã¿ãã¡ã€ã«ãã¢ããããŒãããã¢ãã«éžæãèšç·Žãçµæã®å¯èŠåãè¡ãããšããµããŒãããæææ§èœäºæž¬ã·ã¹ãã ãèšèšã»å®è£ ããææç ç©¶è ã«å¹ççã§äœ¿ããããæ§èœäºæž¬ããŒã«ãæäŸããŸããã
ã°ãšã³ã»ã¬ã»ãã³ããã¯åæ¥åŸãã¢ãªããã°ã«ãŒãã«å ¥ç€ŸãããœãããŠã§ã¢éçºã«åŸäºããŸããäžæµ·å€§åŠã®å€§åŠé¢çãšããŠã圌ã¯ç±å¿ã«åŠã³ãå°éç¥èãšç ç©¶èœåãé«ããå€ãã®è¯ãåž«ãåäººã«æµãŸããŸãããã°ãšã³ã»ã¬ã»ãã³ãããä»åŸã®éã®ãã§åå¿ãå¿ããã䜿åœãèžã«å»ã¿ãå°é£ãä¹ãè¶ããåé²ãç¶ããããšãé¡ã£ãŠããŸãã
è«æãªã³ã¯ïŒåºäºè¯ä¹æç¥çæææç®æææ¹æ³ç ç©¶
ã³ãŒããªã³ã¯ïŒhttps://github.com/han-yuexing/2025-thesis-zyl-code
çèŒãæ¬ç§åæ¥ã¯å»¶èŸºå€§åŠã2022幎9æããäžæµ·å€§åŠèšç®æ©å·¥åŠéšã§ä¿®å£«èª²çšãéå§ããç ç©¶ã°ã«ãŒãã«åå åŸãéè¶èææã®æå°ã®äžãèªç¶èšèªåŠçãªã©ã®é¢é£æè¡ãšå¿çšãåŠã³ã以äžã®ç ç©¶ãå®äºããŸããïŒ
-
å€§èŠæš¡èšèªã¢ãã«ã®ç§åŠæç®ã«ããããšã³ãã£ãã£æœåºã®å¯èœæ§ãåŒãåºãããã«ãæèã«äžè²«ãããšã³ãã£ãã£ã®æç€ºçãªã¢ãããŒã·ã§ã³ææ³ãšäºæ®µéã®ãã¬ãŒãã³ã°ææ³ãææ¡ããå€§èŠæš¡èšèªã¢ãã«ã®çæçåºåãšåœåãšã³ãã£ãã£èªèã¿ã¹ã¯ã®ç³»åã¢ãããŒã·ã§ã³ç¹æ§ã®éãã解決ããŸããæ¬¡ã«ããã¬ãŒãã³ã°æ®µéã¯ç£èŠåŸ®èª¿æŽãšçŽæ¥çãªå¥œã¿ã®æé©åã®2ã€ã®æ®µéã«åãããç£èŠåŸ®èª¿æŽæ®µéã§ã¯æ¢åã®ã¢ãããŒã·ã§ã³ããŒã¿ã§åºæ¬çãªãšã³ãã£ãã£èªèèœåãåŠç¿ããŸããçŽæ¥çãªå¥œã¿ã®æé©å段éã§ã¯ãã¢ãã«ã誀ããä¿®æ£ããããã®ãã广çãªã¬ã€ãã³ã¹ãæäŸããããã«ãè² ã®ãµã³ãã«æ§ç¯æã«ãšã³ãã£ãã£ã®å¢çãæ¡åŒµããã³åçž®ããç£èŠåŸ®èª¿æŽåŸã®æšè«çµæããã£ã«ã¿ãªã³ã°ããŠã«ããŽãªæ··ä¹±ãµã³ãã«ãçæããŸããæ£è² ãµã³ãã«ãã¢ã®å¥œã¿ã®å·®ãå©çšããŠå¶çŽã匷åããã¢ãã«ã®èª€å€å®ä¿®æ£èœåãåäžãããŸãã
-
ææç§åŠãçç©å»åŠã®ãããªé«åºŠã«å°éåãããé åãæ±çšã¢ãã«ã§æ±ãå Žåãäœé »åºŠã®å°éçšèªãå€ããååä»ãå®äœã®èªè粟床ãäžååã§ãããšããåé¡ã解決ããããã«ãæ¬è«æã§ã¯ãç°ãªããã¡ã€ã³èšèªã¢ãã«ãšãã¡ã€ã³åèªã¬ãã«ãã¯ãã«ãæå³çã«èåããããšã§ãç§åŠæç®ã®ããæ·±ãæå³çè§£ã匷åãããã¡ã€ã³èšèªã¢ãã«ã«åºã¥ãæå³èåææ³ãææ¡ããææç§åŠãçç©å»åŠåéã®è€éãªå°éåãããããã¹ãã«å¯ŸããŠãå®éšã«ãããã®æå¹æ§ãæ€èšŒãããæ¬ææ³ã®æå¹æ§ã¯ãææç§åŠãšçç©å»åŠåéã®è€éãªå°éããã¹ãã«å¯ŸããŠå®éšçã«æ€èšŒããããæåŸã«ãæ¬ææ³ãç¹å®ã®åéã«é©çšãã3çš®é¡ã®é«ç¡¬åºŠåéãèšèšããããšã§ãç§åŠçããã¹ããã€ãã³ã°ãšç ç©¶éçºã®æææ±ºå®æ¯æŽã«ãããå®çšç䟡å€ã瀺ãã
忥åŸãçèŒããã¯ç¶æ²ã¢ãã€ã«éä¿¡äŒç€Ÿã«å ¥ç€ŸããŸããçèŒããã¯äžæµ·å€§åŠã§ã®3幎éã®å€§åŠé¢ç掻ã®äžã§ãç±å¿ã«åŠã³ãç ç©¶ãããžã§ã¯ãã«åå ããŸãããè€éãªåé¡ã«å¯ŸããŠè¿ éã«åæãã广çãªè§£æ±ºçãææ¡ããèœåã瀺ããç¬ç«ããç ç©¶èœåãšé©æ°æèãæã£ãŠããŸããçèŒãããä»åŸã®éã®ãã§åå¿ãå¿ãããå°é£ãä¹ãè¶ããåé²ãç¶ããããšãé¡ã£ãŠããŸãã
è«æãªã³ã¯ïŒé¢åç§åŠæç®çåœåå®äœè¯å«ç ç©¶äžåºçš
ã³ãŒããªã³ã¯ïŒhttps://github.com/han-yuexing/2025-thesis-wh-code
æã ã®ããŒã ã¯ãåœéãžã£ãŒãã«ãExpert Systems With Applicationsã(IF:7.8ãäžç§é¢äžåºTop)ã«è«æ âA projection module based on the shape space theory for small-sample image processingâãçºè¡šããŸããããã®è«æã¯äžæµ·å€§åŠèšç®æ©å·¥åŠéšã第äžèè ãšãªãã
âäºååŠç¿+埮調æŽâã®ãã©ãã€ã ã¯ãéãããããŒã¿ã»ããã«ãããç¥çµãããã¯ãŒã¯ã®ç»ååŠçã«æå¹ãªããŒã«ãæäŸããŸãããã®æ¹æ³ã¯ãå€§èŠæš¡ãªãœãŒã¹ããŒã¿ã»ããã§ã¢ãã«ãäºååŠç¿ãããããšã§ãã¿ãŒã²ããã®å°ããªããŒã¿ã»ããã®æ å ±äžè¶³ãè£ããŸããããããã¿ãŒã²ããããŒã¿ã»ãããããã«å°ããªãµã³ãã«ãµã€ãºã«çž®å°ããããšãæ¢åã®æ¹æ³ã¯ç§»è¡ã¢ãã«ã®æ§èœãç¶æããã®ãé£ãããªããå¹æãæ¥æ¿ã«æªåããŸãããã®æ¬ é¥ãå æããããã«ãæ¬è«æã§ã¯ã圢ç¶ç©ºéçè«ã«åºã¥ãæåœ±ã¢ãžã¥ãŒã«PMSSãææ¡ããå°ããªãµã³ãã«ã·ãŒã³ã«ãããç§»è¡ã¢ãã«ã®èœåã匷åããŸãã
æã ã¯ãŸãããœãŒã¹ããŒã¿ã»ããã§ã¢ãã«ãäºååŠç¿ããä¿åããŸããæ¬¡ã«ãäºååŠç¿ããã¢ãã«ã䜿çšããŠã¿ãŒã²ããããŒã¿ã»ããã®ç¹åŸŽãæœåºããŸãããããã®å ã ãŠãŒã¯ãªãã空éã«ãã£ãç¹åŸŽã¯ãPMSSãéããŠäºå圢ç¶ç©ºéã«æåœ±ãããåŸç¶ã®ãã¬ãŒãã³ã°ãè¡ãããŸããããã«ãåŠç¿ããã»ã¹ã«ã¯ã©ã¹èªè泚æã¡ã«ããºã ãå°å ¥ããç¹åŸŽè¡šçŸèœåã匷åããããšã§ãå°ããªãµã³ãã«ã¿ã¹ã¯ã«å¯Ÿããã¢ãã«ã®åŠçèœåãåäžãããŸãã10çš®é¡ã®ããã¯ããŒã³ãããã¯ãŒã¯ãš5ã€ã®ããŒã¿ã»ããã«ããã倧éã®å®éšã«ãããPMSSã®æå¹æ§ã蚌æãããŸãããCIFAR10ãCIFAR100ããã³ãã®å°ãµã³ãã«ãµãã»ããã§ãããã6%ã8%ããã³13%ã®ç²ŸåºŠåäžãå®çŸããŸãããPMSSã¯ãã©ã°ã¢ã³ããã¬ã€èšèšãæ¡çšããŠããããããã¯ãŒã¯ã¢ãŒããã¯ãã£ã倿ŽããããšãªããçŸå®äžçã®éãããããŒã¿ã·ã¹ãã ã«çŽæ¥é©çšã§ããŸããææ°ã®å€æ§äœåŠç¿ææ³ãããã¹ã転éåŠç¿ææ³ãšæ¯èŒããŠãPMSSã¯å°ããªãµã³ãã«ã¿ã¹ã¯ã®åŠçã«ãããŠæå ç«¯ã®æ§èœãéæããŸããã
è«æãªã³ã¯ïŒA projection module based on the shape space theory for small-sample image processing
ã³ãŒããªã³ã¯ïŒhttps://github.com/hg18855467337-del/PMSS
ç§ãã¡ã®ããŒã ã¯ãè«æ âDeep Learning-Based Framework for Efficient Design of Multicomponent é«ç¡¬åºŠé«ãšã³ããããŒåéã®å¹ççèšèšã®ããã®ãã£ãŒãã©ãŒãã³ã°ã«åºã¥ããã¬ãŒã ã¯ãŒã¯ããçºè¡šããã äžæµ·å€§åŠã³ã³ãã¥ãŒã¿ãŒå·¥åŠç§ãçé èè ãšãªãã
ææç§åŠã®åéã§ã¯ãé«ãšã³ããããŒåéïŒHEAïŒããã®åªããç¹æ§ããæ³šç®ã®ç ç©¶ããŒããšãªã£ãŠãããããããèšå€§ãªåéçµæã®äžãã驿°æ§ãšä¿¡é Œæ§ãå Œãåããæé©èšèšãèŠåºãããšã¯ã倧ããªèª²é¡ã«çŽé¢ããŠãããåŸæ¥ã®è©Šè¡é¯èª€çãªææ³ã¯éå¹ççã§ãããçŽç²ã«ããŒã¿é§åçãªææ³ã§ã¯èšèšã®å®çšçãªæ§èœãä¿èšŒããããšã¯å°é£ã§ããããã®åé¡ã«å¯ŸåŠããããã«ãæã ã¯ã倿åãé«ç¡¬åºŠãé«ãšã³ããããŒåéã®èšèšããã»ã¹ãæé©åããããã«ãææãã¡ã€ã³ã®ç¥èãšããŒã¿é§åæè¡ãçµã¿åããããã£ãŒãã©ãŒãã³ã°ããŒã¹ã®ãã¬ãŒã ã¯ãŒã¯ãææ¡ããã
ãŸããMaterials Cascade Embedding (MCE)ã¢ãžã¥ãŒã«ãéçºããBiLSTM-CRFãããã¯ãŒã¯(MCE-BILSTM-CRF)ãšçµ±åããŠãéå»5幎éã«çºè¡šããã2,698ã®è«æãèªåçã«åæãã8,067ã®ããŒã¿ãã€ã³ããæœåºãããããŒã¿åæã«ææåéã®ç¥èãåãå ¥ããããšã§ãæ©æ¢°åŠç¿ããŒã¿ã»ããã®èšèšãšæ§ç¯ã®æéãšãªããå¯èœæ§ã®é«ãèŠçŽ ãšéèŠãªããã»ã¹æ¡ä»¶ãç¹å®ããã察象ãšãªãæç®ãæäœæ¥ã§èŠçŽã»ç §åããåŸã13ã®èŠçŽ ãå«ã硬床ããŒã¿ã»ãããæ§ç¯ãããããã«åºã¥ããŠãéºäŒçã¢ã«ãŽãªãºã ïŒGAïŒãšç²å矀æé©åïŒPSOïŒãçµã¿åããã2段éã®èšèšæŠç¥ã掻çšãã倿åã®é«ãšã³ããããŒåéãéçºãããç¬¬äžæ®µéã§ã¯åéã·ã¹ãã ãæ¢çŽ¢ããç¬¬äºæ®µéã§ã¯æåæ¯çãæé©åããããšã§ãæè¡é©æ°ãšæ§èœåäžãä¿é²ãããæã ã®åæã§ã¯ãSHAPç¹åŸŽã®æææ§ãšãã¢ãœã³çžé¢ä¿æ°ïŒPCCïŒãçµã¿åãããææåéã®ç¥èã«ãã£ãŠè£å®ããçºèŠãæ€èšŒããŠåéç³»ã®éžæãå°ãã æçµçã«ãæ¢åã®ããŒã¿ã»ãããšã¯ç°ãªã3çš®é¡ã®é«ãšã³ããããŒåéã®èšèšã«æåããå¹³åçžå¯Ÿç¡¬åºŠèª€å·®ã5%æªæºã«äºæž¬ããããšãã§ããŸããã
è«æãžã®ãªã³ã¯: Deep Learning-Based Framework for Efficient Design of Multicomponent High Hardness High Entropy Alloys
è«æãFast and Accurate Recognition of Perovskite Fluorescent Anti-Counterfeiting Labels Based on Lightweight Convolutional Neural NetworksããåœéåŠè¡èªACS Applied Materials & Interfaces (IF:8.3, CAS Region II)ã«æ²èŒãããŸããã軜éç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã«åºã¥ãåœé ã©ãã«ãããã®è«æã®çé èè ã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿ãŒå·¥çšç§åŠåŠé¢ã
åœé 鲿¢æè¡ã¯ãæ å ±ã»ãã¥ãªãã£åéã«ãããŠåžžã«éèŠãªèª²é¡ã§ããã 確çéçšã«ããçæãããã©ã³ãã ãã¿ãŒã³ã§ããPUF(Physical Unclonable Function)ã©ãã«ã¯ããã®ç©çãã¿ãŒã³åºæã®ã©ã³ãã æ§ã«ãããåœé 鲿¢çãšããŠæå¹ã§ããã æ¬ç ç©¶ã§ã¯ã衚é¢åŒµåå¶çŽã«åºã¥ãé«ã¹ã«ãŒãããæ¶²æ»Žã¢ã¬ã€çææè¡ããå¶åŸ¡å¯èœãªåœ¢ç¶ãšãµã€ãºãæããã«ã«ã³ã²ãã€ãçµæ¶èã®èª¿è£œã®ããã«éçºããã PUFã©ãã«ã®ãã¯ã¹ãã£ãŒã¯ãã«ã«ã³ã²ãã€ãããçµæ¶ç²ã®ã©ã³ãã ãªååžãå©çšããŠæ§ç¯ãããã ä»ã®åœé 鲿¢ã©ãã«ãšæ¯èŒããŠãæ¬ç ç©¶ã®ã©ãã«ã¯èå ç¹æ§ãæããã ãã§ãªãããã€ã¯ãã¡ãŒãã«ãµã€ãºãäœã³ã¹ããé«ç¬Šå·åèœåãæãã倿®µéã®åœé 鲿¢ããµããŒãããã ããã«ãæ¬ç ç©¶ã§ã¯ãéšåç³ã¿èŸŒã¿ãããã¯ãŒã¯ïŒPaCoNetïŒã«åºã¥ã驿°çãªPUFèªèææ³ãå°å ¥ããèªè粟床ãšé床ã®é¢ã§åŸæ¥ã®ææ³ã®éçã«å¹æçã«å¯ŸåŠããŠããã æå€§60çš®é¡ã®ç°ãªããã¯ã圢ç¶ãšãŠããŒã¯ãªãã€ã¯ããã¯ã¹ãã£ãå«ãã«ã«ã³ãµã€ãããçµæ¶ãã£ã«ã ã®ããŒã¿ã»ãããå®éšçã«æ€èšŒããçµæãæ¬ç ç©¶ã®ææ³ã¯æå€§99.65ïŒ ã®èªè粟床ãéæããç»å1æãããã®èªèæéãããã0.177ç§ã«å€§å¹ ã«ççž®ããããšãã§ããåœé 鲿¢åéã«ããããããã®ã¿ã°ã®å¿çšã®å¯èœæ§ãæµ®ã圫ãã«ããã
è«æãžã®ãªã³ã¯: Fast and Accurate Recognition of Perovskite Fluorescent Anti-Counterfeiting Labels Based on Lightweight Convolutional Neural Networks
ç§ãã¡ã®ããŒã ã¯ãè«æããã®å Žèгå¯ã«åºã¥ãã©ã¹ãã«ãã³ãµã€ã倿 ã®çµ±èšãšè§£æããçºè¡šãããStatistics and Analysis of Lath Martensite Transformation based on in situ observation and video processing âãšããè«æãçºè¡šããã çé èè ã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿ãŒå·¥çšç§åŠåŠé¢ã
ææç§åŠã«ãããç ç©¶ææ³ã¯ã人工ç¥èœãç§åŠæ©åšã®çºéã«äŒŽããæ°ããªå€é©ãéãã€ã€ããã åŸæ¥ã®éæ¢ç»åã«åºã¥ãææç¹æ§ã®ç ç©¶æ¹æ³ãããåçãªåç»ã«ãã£ãŠææã®åŸ®çްæ§é ãå€åããéçšãæããã«ããæ¹æ³ãžã®è»¢æã¯ãç ç©¶ã®å¥¥è¡ããæ·±ããã ãã§ãªããããŒã¿åŠçã®å¹çãé£èºçã«åäžãããã ç¹ã«ééŒè£œé ã®åéã§ã¯ããªãŒã¹ããã€ããããã«ãã³ãµã€ããžã®çžè»¢ç§»ã®ç ç©¶ã¯ãææç¹æ§ãæé©åããããã«æ¥µããŠéèŠã§ããã
æ¬è«æã§ã¯ãéçç»åç ç©¶ã®éçãæç Žãããåçåç»ãçšããã¹ã©ãããã«ãã³ãµã€ãã®çžå€æ è§£ææ³ãææ¡ããã æ¬ææ³ã¯ãåã ã®ã¹ã©ãããã«ãã³ãµã€ãã®ç»åããŒã¿ãå¹ççã«åå²ã»æœåºãããã®å€åæ³åãåçåç»ã§è§£æããããšãã§ããã å€åœ¢ããã¹ã©ããã®æ°ã倧ãããé¢ç©ãæ¹åãå«ãããã€ãã®éèŠãªå±æ§ãã«ãŠã³ãããããšã«ããããã«ãã³ãµã€ãçžå€æ ã®åçç¹æ§ã®å æ¬çãªåæãéæããã ãã®æ¹æ³ã¯ãæ å ±æœåºå¹çãåäžãããã ãã§ãªãããã«ãã³ãµã€ãçžå€æ ã¡ã«ããºã ãæããã«ããééŒè£œé ããã»ã¹ãæé©åããããã®éèŠãªããŒã¿ãµããŒããæäŸããŸãã
ãã®çµæã¯ãç¹ã«ã¹ã©ãããã«ãã³ãµã€ãã®è€éãªåœ¢æ ãšæ¥éãªå€æ éçšã«çŽé¢ããå Žåãåçãããªç ç©¶ãããŒã¿åŠçã®å¹çãšç²ŸåºŠãå€§å¹ ã«æ¹åã§ããããšã瀺ããŠããã å°æ¥çã«ã¯ããã®æ¹æ³ãããå€ãã®ææç³»ã®ç ç©¶ã«å¿çšããææç¹æ§ã®æé©åãšããã»ã¹æ¹åãããã«æšé²ããããšèããŠããŸãã
ç§ãã¡ã®ããŒã ã¯ãè«æ ãAutomatic pipeline for information of curve graph in papers based on deep learning ããçºè¡šãããèªåãã€ãã©ã€ã³ããçºè¡šããã çé èè ã¯äžæµ·å€§åŠèšç®æ©å·¥çšç§åŠé¢ã
ææç§åŠãçç©å»åŠã®åéã§ããã çŸåšã®åŠè¡ããŒã¿ããŒã¹ããŒã«ã¯ãäž»ã«ããã¹ãæ å ±ã®ãã€ãã³ã°ã«éç¹ã眮ããŠãããã°ã©ãããã£ãŒãã«ç€ºããã貎éãªæ å ±ã¯ç¡èŠãããŠããã 倧éã®æç®ããæ å ±ãæœåºããããšã§ãç ç©¶è ã¯éçºã®çŸç¶ãè¿ éã«ææ¡ããããšãã§ããã æç®ã¯æ§ã ãªåœ¢åŒã®ããŒã¿ã®æ ãæã§ãããã»ãšãã©ã®ç ç©¶è ã¯ããã¹ãã³ã³ãã³ãã«ã®ã¿æ³šç®ããŠããã ç¹ã«ã°ã©ãã®ããã«ãä»ã®ããŒã¿ã§ã¯è¡šçŸãããªãéèŠãªæ°å€æ å ±ãå€ãå«ãŸããŠããã æ¬çš¿ã§ã¯ãæç®äžã®ã°ã©ãããæ å ±ãæœåºããææ³ãææ¡ããã ãã®ææ³ã§ã¯ãã°ã©ããšããã¹ãã®äž¡æ¹ãããæ²ç·ã°ã©ãã®æ°å€ãšè»žå®äœãæœåºããããšãã§ããã ãŸããYolov5sãçšããŠæç®ããæ²ç·ã°ã©ããåãåºãã æ¬¡ã«ãSentence-BertãæäœããŠãåæ²ç·ã°ã©ãã«å¯Ÿå¿ããæ£ç¢ºãªã¿ã€ãã«ããã¹ããç §åããã ã¿ã€ãã«ããã¹ããåŸãåŸãSCI-BertãçšããŠæ²ç·ã°ã©ãã®X軞ãšY軞ã®ååãæœåºããã åæã«ãå åŠåŒæåèªèïŒOCRïŒãªã©ã®æè¡ã䜿çšããŠãã°ã©ãã«åæ ãããæ°å€ããŒã¿ãèªåçã«è§£æããã ããã«ãããã©ãŒãã³ã¹ãåäžãããããã«å€ãã®ååãçšããããŠããã Elsevierã®6042ã®è«æãããªãããŒã¿ã»ãããçšããŠãåã¹ããããæ€èšŒããã æ¬ææ³ãçšããå Žåãã°ã©ãæ€åºã®ç²ŸåºŠã¯96.4%ãã¿ã€ãã«ãããã³ã°ã®ç²ŸåºŠã¯95.8%ã§ãããããããåæã¢ãã«ãäžåããæ¬ææ³ã®æå¹æ§ã蚌æãããã ãšã³ãã£ãã£ã®æœåºç²ŸåºŠã¯76.3%ãæ°å€ããŒã¿ã®æœåºç²ŸåºŠã¯28.2%ã§ãã£ãã å®éšçµæãããæ¬ææ³ãæç®ããæ²ç·å³ã®å€§èŠæš¡ãªç¥èæœåºãå®çŸã§ããããšã瀺ãããã
è«æãžã®ãªã³ã¯: Automatic pipeline for information of curve graphs in papers based on deep learning