æåŸ è¬æŒ
ææç§åŠæç®ã«ãããåºæè¡šçŸèªèãšé¢ä¿æœåºã®ç ç©¶ãšå¿çš
äžåœææäŒè°2025ãE06ææã²ãã å·¥åŠåç§äŒ, 2024幎7æ5-8æ¥
åºå·ãäžåœ
ææç»åãã€ãã³ã°ãšææç¹æ§ã®ããã®æ©æ¢°åŠç¿ææ³ã®ç ç©¶
第8åã¢ãžã¢ææããŒã¿ã·ã³ããžãŠã IAMDS2024, 2024幎11æ13-16æ¥
寧埳ãäžåœ
ææç»åãã€ãã³ã°ã«ããææç¹æ§ã®ç ç©¶
c, 2024幎11æ13-17æ¥
寧埳ãäžåœ
ææç»åãã€ãã³ã°ã«åºã¥ãææç¹æ§ã®ç ç©¶
äžåœææäŒè°2024ãE06ææã²ãã å·¥åŠåç§äŒ, 2024幎7æ9-11æ¥
åºå·ãäžåœ
ïŒå£é çºè¡šïŒæææç®ãšææç»åã®ãã€ãã³ã°æ¹æ³ã®ç ç©¶ãšå¿çš
äžåœææäŒè°2023ãE06ææã²ãã å·¥åŠåç§äŒ, 2023幎7æ7-10æ¥
æ·±å³ãäžåœ
åè³æŽ
2023-2024åŠå¹Žäžæµ·å€§åŠåŠéšçå šèª²çšæå°æå¡ã«ã¬ããžãã¬ãã¢ã ãããžã§ã¯ããã«ã¬ããžæå°å®è·µãããžã§ã¯ãïŒéç¹ïŒïŒäººå·¥ç¥èœæè¡ãèåããŠåŠç¿ææ¬²ãé«ããåŠçè²ææ¹æ³ã®æ¢æ±ãåªç§å®äº (2024幎10æ)
2024幎床äžåœééŒç ç©¶ã°ã«ãŒãæžè³ã¢ã«ãŽãªãºã ãããžã§ã¯ãäžçè³ãééæ©é¢è»è»äž¡æå·ç»åèªåèªèAPPãåè³è ïŒéè¶è åå ããŒã ïŒèåæµ©ãå åå¥ (2024幎11æ25æ¥)
äžåœèšç®æ©åŠäŒ CCFåªç§äŒå¡ çªå·ïŒCCF-MEM-DM-2024-00222 (2024幎10æ)
äžæµ·å€§åŠæè·å¡å¹Žæ¬¡è©äŸ¡ åªç§ (2024幎8æ)
2023å¹ŽåºŠäžæµ·åžèšç®æ©åŠäŒåªç§ä¿®å£«è«æããããŒãè³ãæ°åïŒæç¿ç¥ºãæå±ïŒäžæµ·å€§åŠãè«æé¡ç®ïŒäžå®å šã©ãã«ã«åºã¥ãè€éãã¯ã¹ãã£ç»åå岿¹æ³ã®ç ç©¶ãæå°æå¡ïŒéè¶è (2024幎3æ)
2023幎äžåœå€§åŠçã³ã³ãã¥ãŒã¿ãã¶ã€ã³ã³ã³ãã¹ãã第16åãè¬èèªè - æ¬èãæ¢ããäžçè³ãèè ïŒæ¥è¥çŽ é æ¥ æ¢äž¹äž¹ãæå°æå¡ïŒéè¶è (2023幎7-8æ)
å¡ç§åªç§ã¬ãã¥ãŒå°éå®¶ç§°å· (2023幎7æ16æ¥)
2022幎ãµã€é³¥äžåŠç§åŠäººæè²æèšç»åªåè³ (2022幎11æ)
äžæµ·å€§åŠåŠéšåªç§åæ¥èšèšïŒè«æïŒæå°æå¡è³ é®ç€Œæ (2022幎7æ)
2021å¹ŽåºŠäžæµ·å€§åŠé¡èè²¢ç®è³ (2022幎3æ)
2021å¹ŽåºŠäžæµ·åžæè²ã·ã¹ãã 第13åæ¯ç¿Œå飿š¡ç¯å€«åŠ»ïŒ2022幎éžåºïŒ (2022幎1æ)
ãªãŒãã³ãœãŒã¹ãœãããŠã§ã¢
RCFNet_Conv_Resnet50_MHSA
ãããžã§ã¯ã玹ä»ïŒææã®æ§èœã¯ææã®åŸ®çްæ§é ãšå¯æ¥ã«é¢é£ããŠãããå€ãã®ãžã£ãŒãã«/äŒè°è«æã§ãæ§é ãæ§èœãçŽæ¥æ±ºå®ããããšãæç¢ºã«ç€ºãããŠããŸããæ·±å±€åŠç¿ææ³ãçšããŠææã®åŸ®çްæ§é ç»åãåæããæææ§èœãäºæž¬ããååž°ã¢ãã«ãæ§ç¯ããããšã¯éåžžã«åªããæ¹æ³ã§ããããããçŸåšã®å€ãã®ç ç©¶ã§ã¯ãä»ã®èŠèŠã¿ã¹ã¯ã§åªããæ§èœãç€ºãææ³ãææç»åé åã«çŽæ¥ç§»è¡ããŠæææ§èœãäºæž¬ããã ãã«ãšã©ãŸã£ãŠããŸããäŸãã°ãCOCOãImageNetã§åªããæ§èœã瀺ãResNetãAlexNetãªã©ãææç»åã«çŽæ¥ç§»è¡ããæçµçãªåé¡ãããã¯ãŒã¯ã1ã€ã®ã«ããŽãªïŒæ§èœå€ïŒãåºåãããããã¯ãŒã¯ã«çœ®ãæãããã¬ãŒãã³ã°ããŠæææ§èœãäºæž¬ãããšãã£ãæ¹æ³ã§ããããããææç§åŠã®è«æã§ããæææ§èœã«åœ±é¿ãäžããã®ã¯ææç»åã®ç¹å®ã®æ§é ã ãã«éããªãããšãæç¢ºã«ãããŠããŸããå®éãã°ããŒãã«ç¹åŸŽã¯ããŒã«ã«ç¹åŸŽãšåæ§ã«éåžžã«éèŠã§ããããŒã«ã«ç¹åŸŽã¯ææã®ãã¯ã¹ãã£ãçµæ¶ç²çå¯åºŠãæ°åçãªã©ã詳现ã«ç¹åŸŽã¥ããŸãããã°ããŒãã«ç¹åŸŽã¯ç°ãªãç¹åŸŽéã®é·è·é¢äŸåæ§ãèæ ®ããææå ã®ç°ãªãäœçœ®éã®çžäºäœçšé¢ä¿ãçºèŠã§ããããå æ¬çãªæ å ±ãèæ ®ããŠããå®å šãªãããã³ã°é¢ä¿ã確ç«ããŸãããã®ããã°ã©ã ã§æ§ç¯ããããããã¯ãŒã¯ã¯ãããŒã«ã«ãããã¯ãŒã¯åå²ãšã°ããŒãã«ãããã¯ãŒã¯åå²ã®äž¡æ¹ãèæ ®ããææç»åã®ããŒã«ã«ç¹åŸŽãšã°ããŒãã«ç¹åŸŽãããããæœåºããç¹åŸŽã粟å¯ã«èååŠçããããã®å°éçãªç¹åŸŽèåã¢ãžã¥ãŒã«ãææ¡ããŠãããæçµçã«æ§èœãæ£ç¢ºã«äºæž¬ããŸãã
https://github.com/han-yuexing/RCFNet_Conv_Resnet50_MHSA/tree/mainAnalysis-of-SEM-image-of-ceramic-surface-based-on-clustering-method
ãœãããŠã§ã¢ç޹ä»ïŒã»ã©ããã¯è¡šé¢ã®ããæ§é ã¯éåžžã«è€éã§å€åã«å¯ãã§ãããææçµæã®ããããªéãã«ãã£ãŠãææç»åã«å€§ããªå€åãçããŸãããã®ç ç©¶ãã©ãããã©ãŒã ã¯ãã»ã©ããã¯ïŒHfB2âB4CïŒã®ããŸããŸãªé åã®åå²ãšèå¥ãç®çãšããŠéçºãããŸããïŒå³1åç §ïŒãé åã®å¢çãèŠã€ããããšã§åé åãèå¥ããããã«åé åå ã®ãµãé åãèå¥ããããšãã§ããŸãã
https://github.com/han-yuexing/Analysis-of-SEM-image-of-ceramic-surface-based-on-clustering-methodImage-Analysis-of-Atomic-Force-Microscope-on-Material-Surface-Based-on-Deep-Learning-Method
ãœãããŠã§ã¢ç޹ä»ïŒDNAããããã®åœ¢æ ç ç©¶ã®ãããç ç©¶è ã¯ååéåé¡åŸ®é¡ã䜿çšããŠããããã®AFMç»åãæ®åœ±ããŠããŸããAFMç»åã®ãã€ãºãå€ãã芳å¯ãããDNAãããããå€§èŠæš¡ã«éãªã£ãŠãããããDNAããããããã®åé¡ãšèå¥ãå¿ èŠã§ããAFMç»åã®DNAããããã«ã¯ãå¹³è¡ãåå¹³è¡ã亀差ã®3ã€ã®ç°ãªãDNA圢æ ãå«ãŸããŠããŸãããããã¯DNA倧ååã§äœãããæ¶²äœäžã§æ®åœ±ãããŠãããããèªèã¿ã¹ã¯ã®é£ããã®äžã€ã¯ãAFMç»åäžã®ãããã®ããããããã®åœ¢ç¶ã倿§ã§æè»ã§ããããšã§ããããæ§é ç§åŠæè¡ã¯å€ãã®åéã§æ¥éã«çºå±ããŠããŸãããã³ã¹ããé«ããããååãªããç©äœãµã³ãã«ãåŸãããšã¯äŸç¶ãšããŠå°é£ã§ããããããææåéã«ãããæ·±å±€åŠç¿ææ³ã®çºå±ã劚ããŠããŸãããããã®ç¶æ³ã«åºã¥ãã転移åŠç¿ãšç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã«åºã¥ãDNAããããèªèãœãããŠã§ã¢ãèšèšãããŸããã
https://github.com/han-yuexing/Image-Analysis-of-Atomic-Force-Microscope-on-Material-Surface-Based-on-Deep-Learning-MethodIdentification-and-search-of-Kikuchi-zone-boundary
ãœãããŠã§ã¢ç޹ä»ïŒé»ååŸæ¹æ£ä¹±ãã¿ãŒã³ã¯åæãéããŠçµæ¶ã®æ§é ãæ¹äœãªã©ã®æ å ±ãåæ ã§ãããã®ç²ŸåºŠã¯ãã¿ãŒã³äœçœ®ãšãã¿ãŒã³è»žç·ã®æ±ºå®ã«äŸåããŸããæ¬ãããžã§ã¯ãã§ã¯ãèæ± 垯ãã¿ãŒã³ãåŠçããæ°ããæ¹æ³ãç ç©¶ããç»åäžã®èæ± åž¯ããã³ãã®è»žç·ãšäº€ç¹ãè¿ éãã€æ£ç¢ºã«æšèããããšãã§ããŸãããŸãCannyãªãã¬ãŒã¿ã§èŒªéãšããžãæœåºãããã®çµæã«ããã«Radon倿çŽç·æ€åºã䜿çšããŠåèæ± 垯ã®2ã€ã®ãšããžãååŸããããããå䜵ããŠäžå¿ç·ãåŸãŸãããã®åŸã確ççãã倿æ³ã䜿çšããŠå ã®ç»åã®ãšããžã©ã€ã³ã»ã°ã¡ã³ããæ€åºããŸããåŸãããäžå¿ç·ãšã©ã€ã³ã»ã°ã¡ã³ãã®çµæã«å¯ŸããŠåæ¹åãã£ã«ã¿ãªã³ã°ã¢ã«ãŽãªãºã ã䜿çšããŠéžæãšãã¢ãªã³ã°ãè¡ã£ãåŸãåæ²ç·ã䜿çšããŠèæ± åž¯ã®ãšããžããã£ããã£ã³ã°ããŸããå³5ãšå³6ã¯èæ± åž¯ãã¿ãŒã³ã®ã©ã€ã³ãšã©ã€ã³ã»ã°ã¡ã³ãæ€åºçµæã瀺ããå³7ã¯2ã€ã®èæ± åž¯ãã¿ãŒã³ã®ãã¢ãªã³ã°çµæã瀺ããŠããŸããèæ± 垯å¢çã®æçµæ€åºçµæã¯å³8ã«ç€ºãããŠããŸãã
https://github.com/han-yuexing/Identification-and-search-of-Kikuchi-zone-boundaryCalculation-and-identification-of-spread-rate-of-special-area-on-coating
ãœãããŠã§ã¢ç޹ä»ïŒãã®ãœãããŠã§ã¢ã¯ãæ°ç圢æ åŠã«åºã¥ãã©ã¡ã©èŒªéã®èªåæœåºããã³æ¡æ£åœ¢æ ãã©ã¡ãŒã¿ã®èšç®ãå®çŸããŠããŸããäºå€åå²éŸå€ãæ±ããããã«æå€§ã¯ã©ã¹é忣æ³ã䜿çšããå¹³åãã£ã«ã¿ãªã³ã°ãšåœ¢æ åŠçæäœãç»åã®ãã€ãºé€å»ã«é©çšããåã ã®ã©ã¡ã©ã®é£çµæ§ã確ä¿ããŠããŸããèŒªéæœåºã«ãã£ãŠã©ã¡ã©ã®ãšããžæ å ±ãååŸããæåŸã«æœåºããã茪éã«åºã¥ããŠã©ã¡ã©ã®å å®åºŠãã©ã¡ãŒã¿ãèšç®ããŸãããã®ãœãããŠã§ã¢ã¯ã©ã¡ã©èŒªéãæ£ç¢ºã«èå¥ã§ãããã€ãºå¹²æžã«å¯Ÿãã匷ãèæ§ãæã¡ãç ç©¶è ã®ç ç©¶å¹çã广çã«åäžãããŸãã
https://github.com/han-yuexing/Calculation-and-identification-of-spread-rate-of-special-area-on-coatingSegmentation-of-material-image-with-virtual-boundary-based-on-depth-learning-VGG-model
ãœãããŠã§ã¢ç޹ä»ïŒæ°ææã®éçºã¯ææç§åŠã®çºå±ãæšé²ããéèŠãªåååã§ãããææã²ãã å·¥åŠã¯çŸåšãææç§åŠåéã®æå 端ã®åŠéçåéã§ãæ°ææã®ç ç©¶éçºãµã€ã¯ã«ãççž®ããæéãšäººçã³ã¹ããåæžã§ããŸããææç»åã®åŸ®çްæ§é ã®åå²ãšèªèã¯ãææã²ãã å·¥åŠã«ãããããŒã¿ããŒã¹æ§ç¯ã®ããã®ããŒã¿åºç€ãæäŸã§ããŸããæ¬ææ³ã¯è€éãªãã¯ã¹ãã£ç¹åŸŽèåã«åºã¥ãææç»åå岿æ³ãææ¡ããFCNãåºç€ãããã¯ãŒã¯ãšããŠéžæã»æ¹è¯ããåçžã®ãã¯ã¹ãã£ãé¡äŒŒããææç»åã®ç²Ÿå¯åå²ãå®çŸããŠããŸãããããã¯ãŒã¯ã¯ãšã³ã³ãŒãã£ã³ã°ãšãã³ãŒãã£ã³ã°ã®æ®µéã«åãããVGG16ïŒVGGãããã¯ïŒãããã¯ããŒã³ãããã¯ãŒã¯ãšããŠäœ¿çšãããã³ãŒãã£ã³ã°æ®µéã§ã¯ãã«ã¹ã±ãŒãæ¥ç¶ãããç¹åŸŽèåã¢ãžã¥ãŒã«ã䜿çšããŠé«å±€ãšäœå±€ããã®ç¹åŸŽãããã®ã»ãã³ãã£ãã¯æ å ±ãèåããŸããæ¬¡ã«ãèåãããç¹åŸŽãããããã«ãã¹ã±ãŒã«åŠç¿ã¢ãžã¥ãŒã«ïŒMulti-scale blockïŒã«å ¥åãããã¯ã¹ãã£æ å ±ãããã«æœåºããŸãããã³ãŒãã£ã³ã°æ®µéã§ã¯ãåå±€ã®åŸ©å ãããç¹åŸŽãããã«å¯ŸããŠæ³šææ©æ§ã¢ãžã¥ãŒã«ïŒAttention blockïŒã䜿çšããŠç¹åŸŽãããã«éã¿ãä»å ãããã£ãã«æ³šææ©æ§ã¯éèŠãªç¹åŸŽããããä¿æããç©ºéæ³šææ©æ§ã¯éèŠãªç¹åŸŽãããå ã®éèŠãªãã¯ã¹ãã£æ å ±ãä¿æããŸãããŸããææç»åã«ãããããŒã¿ååžã®äžåè¡¡åé¡ã«å¯ŸããŠãæ¬ç« ã§ã¯Diceæå€±ãéžæã»æ¹è¯ããåå²çµæãæé©åããŠããŸãã
https://github.com/han-yuexing/Segmentation-of-material-image-with-virtual-boundary-based-on-depth-learning-VGG-modelCrystal-structure-recognition-method-based-on-machine-learning
ãœãããŠã§ã¢ç޹ä»ïŒååã®éåã«ããçµæ¶æ§é ãå€åããããã«ãã塿§å€åœ¢ãçããŸããçµæ¶ææã®å¡æ§å€åœ¢ãšæææ§èœã¯å¯æ¥ã«é¢é£ããŠãããææã®å€åœ¢ã¡ã«ããºã ã®ç ç©¶ã¯æææ§èœã®åæãå€åœ¢ã¡ã«ããºã ã®çè§£ã«éåžžã«éèŠãªåœ¹å²ãæãããŸããããããçŸåšã®çµæ¶æ§é èªèã¯ãã°ãã°ãµã³ãã«ããŒã¿äžè¶³ã®åé¡ã«çŽé¢ããŠãããæ¢åã®äžéšã®ææ³ã§ã¯ãã¹ãŠã®çµæ¶æ§é ãèå¥ã§ããŸãããçµæ¶æ§é ã«ãããå°æ°ãµã³ãã«åé¡ãšæ¢åææ³ã®äžè¶³ã«å¯ŸããŠãæ¬ç ç©¶ã§ã¯æ©æ¢°åŠç¿ã«åºã¥ãçµæ¶æ§é èªèææ³ãææ¡ããŠããŸãã
https://github.com/han-yuexing/Crystal-structure-recognition-method-based-on-machine-learningRoughening-Behavior-Analysis-Procedure-for-2205-Duplex-Stainless-Steel
ãœãããŠã§ã¢ç޹ä»ïŒææã調補ããéãæåºããæ²æ®¿ç©ãææã®æ§èœã«åœ±é¿ãäžããããšããããæ²æ®¿ç©ã®ãµã€ãºãšååžãæ§èœã«å€§ããªåœ±é¿ãäžããŸããäŸãã°ãäºçžã¹ãã³ã¬ã¹éŒã¯åªããæ©æ¢°çç¹æ§ãšè飿§ãæã¡ããããã®åªããç¹æ§ã¯ãã§ã©ã€ããšãªãŒã¹ããã€ãã®åœ¢æã«èµ·å ããŠããŸããã補é ããã»ã¹äžã«Ïçžãªã©ã®äºæ¬¡çžãçºçãããããªããŸããåæã容æã«ããããã補é ããã»ã¹äžã«ç»åãåéããŠåŠçããããšãã§ããŸããæ·±å±€åŠç¿ã®è¯å¥œãªæ§èœãšææç ç©¶ã«ããããã®æåçãªå¿çšã«åºã¥ããŠããã®ããã°ã©ã ã¯è€æ°ã®åå²ãããã¯ãŒã¯ãšäžéšã®ããŒã¿ã»ããã§èšç·Žãããã¢ãã«ãæäŸãããŠãŒã¶ãŒã深局åŠç¿ã¢ã«ãŽãªãºã ã§ææç»åããã䟿å©ã«åŠçã§ããããã«ããŠããŸããçžéãšãã«ã®ãŒã¯ããªã¹ãã¯ã«ãçæã¡ã«ããºã ã«åºã¥ããŠãåæç¹ã§ã®æ²æ®¿ç©ã®ååŸããèšç®ãããŸãã
https://github.com/han-yuexing/Roughening-Behavior-Analysis-Procedure-for-2205-Duplex-Stainless-Steel