2022幎11æ25æ¥ãåœå®¶ããã³åŠæ ¡ã®ææäºé²æ¿çã«å¿ãããããéè¶å Žåææã®ç ç©¶ã°ã«ãŒãã¯2022å¹ŽåºŠã®æèŠªäŒå Œæ°å ¥çæè¿äŒãèšç®æ©åŠé¢ã®402宀ã§éå¬ããŸãããåå è ã«ã¯éè¶å Žå çã匵çã¬ãã£ãŒãé³äŸšå·å çãªã©ãå«ãŸããŠããŸããäŒã®éãéå çã¯åŒµå çã«ã°ã«ãŒãã®æ°æ§ã¡ã³ããŒã玹ä»ããåŠè¡ç ç©¶ã®åéã«ç©æ¥µçã«ã¹ããŒã掻åãçµç¹ããããåŒã³ãããŸãããããã«ãã£ãŠãå¥åº·ä¿é²ãšã°ã«ãŒãã®é°å²æ°åäžã®äž¡æ¹ãå®çŸããããšãã§ããŸããé³å çã¯åŠçæä»£ã®æ¥œãããšããœãŒããçãããšå ±æããŸããã匵å çã¯å¹žããªå®¶åºç掻ã«ã€ããŠçãããšå ±æããŸãããäŒé£ã®éäžãåŠå¹Žããšã«å¥œããªæ²ãéžãã§å ±æããæå±ããŸãããå€ãåæ²ããçŸåšäººæ°ã®ããæ²ãŸã§ã倿§ãªé³æ¥œãæ«é²ãããŸãããæåŸã«ãåãããªç¬ã声ãšãšãã«æèŠªäŒã¯å¹ãéããŸããã

è¡å¹²ããã¯ç·æ§ã§ãå®åŸœç工倧åŠã®ã³ã³ãã¥ãŒã¿é¢é£å°æ»ã§åŠå£«ãšä¿®å£«ã®åŠäœãååŸããŸãããçŸåšã¯äžæµ·å€§åŠã® ã³ã³ãã¥ãŒã¿åŠé¢ã®2022å¹Žå ¥åŠã®å士課çšã«åšç±ããŠããŸããæ§æ Œã¯å åçã§ãããŸã話ããŸããããæã¡è§£ãããšãš ãŠããŠãŒã¢ã¢ã®ããäžé¢ããããŸããè¶£å³ã¯åçãšã©ã³ãã³ã°ã§ãæ®æ®µã¯åéãšäžç·ã«League of Legendsãæ¥œãã ã ããããŸãïŒãã ããã¹ãã³ãè²·ããéããªããããã¹ãã³ãã§ã³ãžã£ãŒã䜿çšããŠãããšã¢ã«ãŠã³ããå°ãããã ããšããããããŸãïŒãäžå€§ãšããæ°ããç°å¢ã§æ°ããªææãåŸãããè峿·±ã人ã ãšåºäŒã£ããããããšãæãã§ã ãŸããèªå·±ãåäžãããããã«åªåããæåŸã«ã¯é 調ã«åæ¥ããããšãé¡ã£ãŠããŸãïŒ
çæ §ããã¯ã延蟺倧åŠã®å·¥åŠé¢ã§ã³ã³ãã¥ãŒã¿ç§åŠãšæè¡ã®å°æ»ãåŠã³ãçŸåšã¯äžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿ç§åŠãšæ è¡ã®ä¿®å£«èª²çšã«åšç±ããŠããŸããæ§æ Œã¯æããéæŸçã§ãçæŽ»ã楜ããããšãåçãããŸãšããããšã楜ããã§ã㟠ããèªç±ãªæéãæã€ãšãèªåèªèº«ããªã©ãã¯ã¹ãããããšã奜ã¿ãèªç±ã«æéãéããããšããããŸããäžæµ·å€§åŠã« é²åŠããŠããã¯ãç ç©¶çæŽ»ãéããŠå°éèœåãåäžãããæé·ãç¶ããããšãæãã§ããŸããäžæ©ãã€çå®ã«é²ãã§ã èªèº«ã®éãæ©ãã§ãããããšæã£ãŠããŸãã


åŒ äžç³ããã¯ã女æ§ã§ãæ¬ç§ãé»éŸæ±ç§æå€§åŠã®ã³ã³ãã¥ãŒã¿ãšæ å ±å·¥åŠåŠé¢ã®ãœãããŠã§ã¢å·¥åŠå°æ»ã§ä¿®ããçŸ åšã¯äžæµ·å€§åŠã®é»åæ å ±ã®ä¿®å£«èª²çšã«åšç±ããŠããŸããæ§æ Œã¯æãããç©æ¥µçã§æ¥œèгçã§ããã人ã«å¯ŸããŠçæ¯ã§è²¬ä»» æããããŸããäœæã®æéã«ã¯æ¬ãèªãã ãã鳿¥œãèŽããããæ ç»ã芳ããããããšã奜ã¿ãŸãããã®æ°ããªæ ã®äž ã§ãèªåèªèº«ãããè¯ãããããã«åªåããããšãé¡ã£ãŠããŸãã
赵实ããã¯ç·æ§ã§ãåäº¬ææ¥å€§åŠã®ãœãããŠã§ã¢å·¥åŠïŒçµã¿èŸŒã¿ã·ã¹ãã è²æïŒå°æ»ã§åŠå£«å·ãååŸããçŸåšã¯äž 海倧åŠã®é»åæ å ±å°æ»ã®ä¿®å£«èª²çšã«åšç±ããŠããŸããæ§æ Œã¯å€åçã§ãã³ãã¥ãã±ãŒã·ã§ã³èœåã«åªããäžå®ã®çµç¹èœ åãæã£ãŠããŸããå°é£ã«å¯ŸããŠã¯è² ããå«ãã®ç²Ÿç¥ãæã¡ãæéãšãšãã«ã®ãŒãè²»ããã°ã©ããªå°é£ãå æã§ãããš ä¿¡ããŠããŸããæ®æ®µã®ç掻ã§ãéå±ãªäººã§ã¯ãªããã¢ãŠããã¢ã§ãªãã¬ãã·ã¥ããããç°ãªãçµéšãããããšã§ç掻ã è±ãã«ããããšã奜ãã§ããè¶£å³ãšããŠã¯æ ç»ã芳ããã鳿¥œãèŽããããæ è¡ããããšã奜ãã§ããç ç©¶çæŽ»ã¯æ°ã ãªæ çšã§ãããç§ã¯æªæ¥ã«åžæãæ±ããŠãããçãããšå ±ã«æ©ãã§ãããããšãé¡ã£ãŠããŸãã


é®ç€Œæããã¯ãäžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿åŠé¢ã®ã³ã³ãã¥ãŒã¿ç§åŠãšæè¡ç³»ã§åŠå£«å·ãååŸãã忥åŸãåãåŠé¢ã® ã³ã³ãã¥ãŒã¿ç§åŠãšæè¡å°æ»ã§ä¿®å£«èª²çšã«é²åŠããŸãããæå°æå¡ã¯éè¶å Žå çã§ããæ¬ãèªãã ãæ ç»ã芳ãããã ããšã奜ãã§ãå²ç¢ãæã€ããšãã§ããŸããæãšååŸã«ã¯çŸå³ããã³ãŒããŒã飲ãããšã奜ãã§ãã人çã¯ããã2äž æ¥çšåºŠãããããŸããããæ¯æ¥ã楜ããéãããèªå·±ææŠãç¶ããªããæé·ããŠãããããšæã£ãŠããŸãã
å åå¥ããã¯äžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿ç§åŠãšæè¡å°æ»ã§åŠå£«å·ãååŸããçŸåšã¯äžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿åŠé¢ã§ä¿® 士課çšãé²ãã§ããŸãã圌ã¯äººåœãããè¯ããæããæ§æ Œã§ããã人ãšã®ã³ãã¥ãã±ãŒã·ã§ã³ã«é·ããŠãããããŸããŸ ãªææŠã«ç«ã¡åããåæ°ãæã¡ãèªå·±ç®¡çèœåãé«ãã§ããæ°ãã人çã®æ®µéã§ã圌ã¯åŠã³ç¶ããç¥èãåŸãŠãçå®ã« åé²ããããšãæãã§ããŸãã


åæšåžããã¯ç·æ§ã§ãæŠæŒ¢çç©å·¥çšåŠé¢ã®ã³ã³ãã¥ãŒã¿ç§åŠãšæè¡å°æ»ã§åŠå£«å·ãååŸããçŸåšã¯äžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿ç§åŠãšæè¡å°æ»ã®ä¿®å£«èª²çšã«åšç±ããŠããŸããåœŒã¯æ§æ ŒãæããæŽ»æ°ããããçæŽ»ãæããŠããŸããè¶£å³ã®æéã«ã¯ã²ãŒã ãããããã©ã³ãã³ã°ããããããããšã奜ãã§ããåé¡ã«çŽé¢ããéã«ã¯èããåæ°ãæã¡ãç°¡åã«ã¯è«ŠããŸãããäžæµ·å€§åŠã§ã®ç ç©¶çæŽ»ã§ã¯ãåªããåŠè¡ççŽ é€ãé€ããå°éèœåãé«ããããšãç®æããçãããšã®è¯å¥œãªäººéé¢ä¿ãç¯ããªããå ±ã«æé·ã§ããããšãé¡ã£ãŠããŸãïŒ
éæ å§ããã¯ãå®åŸœç工倧åŠã§åŠå£«å·ãååŸãã2019幎ã«äžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ã§åŠè¡çãªä¿®å£«èª²çšã«é²åŠããŸãããæå°æå¡ã¯éè¶å Žå çã§ãäž»ãªç ç©¶åéã¯ææç»åã®ã»ã°ã¡ã³ããŒã·ã§ã³ã§ããéå çã®æå°ã®ããšã以äžã®ç ç©¶ã宿ããŸããïŒ
-
ææç»åã®å°èŠæš¡ããŒã¿ãšè€éãªãã¯ã¹ãã£ã®åé¡ã«å¯ŸããŠãã°ã©ãç³ã¿èŸŒã¿ã𿷱局åŠç¿ãçµã¿åãããææç»åã»ã°ã¡ã³ããŒã·ã§ã³ææ³ãææ¡ããŸããããã®ææ³ã§ã¯ãæ®å·®æ¥ç¶ãšãã«ãã¹ã±ãŒã«èåã¢ãžã¥ãŒã«ã䜿çšããŠç¹åŸŽãããã®æ å ±ãè±ãã«ããã°ã©ãç³ã¿èŸŒã¿ã«åºã¥ãäºéæ³šææ©æ§ã䜿çšããŠéèŠãªç¹åŸŽã«çŠç¹ãåœãŠãéç³ã¿èŸŒã¿éšåã«ç³ã¿èŸŒã¿å±€ã远å ããããšã§ãããã¯ãŒã¯ã®éç·åœ¢è¡šçŸèœåãåäžãããŸããã
-
å°èŠæš¡ããŒã¿ã»ããã§ã®ç³ã¿èŸŒã¿å±€ã®éå°ãªäœ¿çšã«ããç¹åŸŽã®æå€±ã®åé¡ã«å¯ŸããUNetãããã¯ããŒã³ãããã¯ãŒã¯ãšããŠäœ¿çšããã¹ãããæ¥ç¶ã«åºã¥ããã°ã©ã泚æåã¢ãžã¥ãŒã«ãèšèšããŸããããã®ææ³ã§ã¯ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®èãæ¹ãåãå ¥ããã°ã©ãç³ã¿èŸŒã¿ãšã°ã©ã泚æåå±€ãçµåãããã°ã©ãæ§é ã®èŠç¹ããè€æ°ã®æ¬¡å ã®ããŒãç¹åŸŽãçµ±åããããšã«åãçµãã§ããŸãããããã¯ãŒã¯ã®æ·±åºŠãå¢å ãããäžæ¹ã§ããã¯ã»ã«ã¬ãã«ã®æ å ±ãšç©ºéæ å ±ã®æå€±ãæžããããããã¯ãŒã¯ã®ã»ã°ã¡ã³ããŒã·ã§ã³æ§èœãåäžãããããšãç®æããŠããŸãã
-
ã°ã©ãç³ã¿èŸŒã¿æè¡ãç°ãªãé åã®ã»ãã³ãã£ãã¯ã»ã°ã¡ã³ããŒã·ã§ã³ã¿ã¹ã¯ã«å¿çšããŸãããã°ã©ããšã³ã³ãŒããŒãšã°ã©ããã³ãŒããŒãææ¡ããç¹åŸŽããããã°ã©ãæ§é ã«å€æããããšã§ãç³ã¿èŸŒã¿ããã»ã¹äžã®ç¹åŸŽãããããã®æ¬¡å ã«åºã¥ããŠå¯Ÿå¿ããããŒãæ°ã®ã°ã©ãæ§é ã«å€æã§ããããã«ããŸãããããã«ãããã°ã©ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ãã»ãã³ãã£ãã¯ã»ã°ã¡ã³ããŒã·ã§ã³ã¿ã¹ã¯ã«é©çšãããããšãä¿é²ããããšãã§ããŸãã
éæ å§ããã¯åæ¥åŸãäžæ±œã°ã«ãŒãã®é¶æãœãããŠã§ã¢å瀟ã§åãããšã«ãªããŸããã3幎éã®ä¿®å£«èª²çšã®ç掻ã¯åœŒå¥³ã®èŠéãåºããé åçãªã³ã³ãã¥ãŒã¿ããžã§ã³ã®åéã«è§Šããæ©äŒãäžããç¹ã«ç»ååŠçã®é åã§ã®æ·±å±€åŠç¿ã®å¿çšã«ã€ããŠç¥ãããšãã§ããŸããããŸããå€ãã®åªããæå°æå¡ãå人ãšãåºäŒããŸããã圌女ã¯å°æ¥ãæé·ãç¶ãããã®çµéšã«æ¥ããªãããã«é 匵ããããšæã£ãŠããŸãã
è«æãžã®ãªã³ã¯ïŒResearch on Material Image Segmentation based on Graph Convolutional Neural Networks
ç§ãã¡ã®ããŒã ã¯ãåœéãžã£ãŒãã«ãScientific ReportãïŒIF: 4.996ïŒã«ãããŠããCenter-environment feature models for materials image segmentation based on machine learningããšããè«æããªã³ã©ã€ã³ã§çºè¡šããŸããããã®è«æã§ã¯ãäžæµ·å€§åŠã®èšç®æ©å·¥åŠãšç§åŠåŠé¢ãç¬¬äžæå±æ©é¢ã§ãããéè¶å Žåææã第äžèè ããã³éä¿¡èè ãšããŠåå ããŠããŸãããã®ç ç©¶ã¯ãé³äŸšå·å çãçå°å çãå蜶å çã®å€§ããªãµããŒããåããŠè¡ãããŸããããŸããæç¿ç¥ºãããšæšç ãããå€ãã®è²¢ç®ãããŸããã
ææã®æ§èœã¯ãæåã ãã§ãªããããŸããŸãªå å·¥æ¡ä»¶äžã§ã®åŸ®çްæ§é ã«ãäŸåããŠããŸãããããŸã§ãè€éãªåŸ®çްæ§é ã®ç»åã®è§£æã¯äž»ã«äººéã®çµéšã«äŸåããŠãããèªåçãã€å®éçãªç¹æ§è©äŸ¡æ¹æ³ãäžè¶³ããŠããŸãããæ©æ¢°åŠç¿ã¯ãããŸããŸãªè€éãªææçžãç¥èãæŽ»çšããŠç¥èŠããããã®æ°ããªéèŠãªããŒã«ãæäŸããŠããŸãããã®ç ç©¶ã§ã¯ããäžå¿ç°å¢åå²ãïŒCESïŒç¹åŸŽã¢ãã«ãææ¡ããç»åã»ã°ã¡ã³ããŒã·ã§ã³ã«äœ¿çšãããŸãããã®ã¢ãã«ã¯ãæ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ãçšããŠç°å¢ç¹åŸŽãšãã¡ã€ã³ç¥èã«åºã¥ããŠç»åãã»ã°ã¡ã³ããŒã·ã§ã³ããŸããCESã¢ãã«ã§ã¯ãäžãããããã¯ã»ã«ã®ç¹åŸŽãšããŠè¿åæ å ±ãå°å ¥ããç 究察象ã®ãã¯ã»ã«ãšåšå²ã®ç°å¢ãšã®é¢ä¿ãåæ ããŸãããããŠãå埩çãªçµ±åæ©æ¢°åŠç¿ã¢ãããŒãã䜿çšããŠãç»åã»ã°ã¡ã³ããŒã·ã§ã³ã¢ãã«ããã¬ãŒãã³ã°ããã³è£æ£ããŸããCESã¢ãã«ã¯ãéŒéãæšæãªã©ã®è€éãªãã¯ã¹ãã£ãæã€7çš®é¡ã®ç°ãªãææç»åã«é©çšãããæåãåããŸãããéŒéç»åã®ã»ã°ã¡ã³ããŒã·ã§ã³ç ç©¶ã§ã¯ãCESææ³ã¯å¢ç茪éã®ç¹å®ã«ãããŠãå€ãã®äŒçµ±çææ³ãããåªããããã©ãŒãã³ã¹ã瀺ããŸããããã®ç ç©¶ã¯ããã¡ã€ã³ç¥èãšç°å¢ç¹åŸŽã®å埩çãªå°å ¥ããããŸããŸãªè€éãªææã®åŸ®çްæ§é ç»åã®ã»ã°ã¡ã³ããŒã·ã§ã³ã®ç²ŸåºŠåäžã«å¯äžããããšã瀺ããŠããŸãã


è«æãžã®ãªã³ã¯ïŒCenter-environment feature models for materials image segmentation based on machine learning
匵å®å€ããã¯ãå èå€èŸ²æ¥å€§åŠã忥ãã2019幎ã«äžæµ·å€§åŠã®èšç®æ©å·¥åŠãšç§åŠåŠé¢ã§åŠè¡çãªä¿®å£«ç ç©¶çãšããŠå ¥åŠããŸãããå ¥åŠåŸãéè¶å Žç ç©¶ã°ã«ãŒãã«æå±ããææç»ååŠçã®ç ç©¶ãè¡ããŸãããéå çã®æå°ã®ããšã次ã®ç ç©¶ã宿ãããŸããïŒ
-
ç°ãªãçµç¹ã®äžåäžãªååžãéãªãåããæã€è€éãªææç»åã«å¯ŸããŠãè€éãããã¯ãŒã¯çè«ã«åºã¥ããç¹åŸŽæ å ±åŠçææ³ãèšèšããŸããããã®ææ³ã§ã¯ãè€éãããã¯ãŒã¯å ã®ã³ãã¥ããã£æ§é ã䜿çšããŠãææå ã®ç°ãªãçµç¹ã衚çŸããŸããããŸãããããã¯ãŒã¯æ§ç¯ããã»ã¹ã§ã®Rããã³Tã®éŸå€ã䜿çšããŠãããã¯ãŒã¯ã®ããããžãŒã®ãã€ãããã¯ãªé²åããã»ã¹ãå éããŸãããããã«ãRT-ã¢ãžã¥ã©ãªãã£ææšãææ¡ãããããã¯ãŒã¯ã®ããããžãŒãè©äŸ¡ããç»ååŠçãå®äºããŸãããã»ã©ããã¯ãéŒéãªã©ã®ç»åãçšããã»ã°ã¡ã³ããŒã·ã§ã³å®éšã«ããããã®ææ³ã®æå¹æ§ã確èªãããŸããã
-
è€éãªãã¯ã¹ãã£ç»åã®å€æ§ãªç¹åŸŽã«å¯ŸåŠãããããäŒçµ±çãªç»ååŠçæè¡ã«åºã¥ãç¹åŸŽæ å ±åŠçææ³ãææ¡ããŸããããã®ææ³ã§ã¯ãææç»åã®ç¹æ§ãå©çšãã察å¿ããç¹åŸŽæ å ±åŠçã¢ã«ãŽãªãºã ãèšèšããŸãããæœåºãã圢ç¶ç¹åŸŽã掻çšããŠãã¯ã¹ãã£ç¹åŸŽã®åŠçãå éããåŠçæéãå€§å¹ ã«åæžããŸãããäžèŠåãªåœ¢ç¶ãšè€éãªãã¯ã¹ãã£ãæã€èãã¿ãŒã³ã®å®éšã«ããããã®ææ³ã®æå¹æ§ãæ€èšŒãããŸããã
-
åŠçé床ãããã«åäžãããèšç®ãªãœãŒã¹ã®æ¶è²»ãæžããããã«ã深局åŠç¿ã«åºã¥ãç¹åŸŽæ å ±åŠçææ³ãèšèšãææ¡ããŸããããã®ææ³ã§ã¯ã軜éãªãããã¯ãŒã¯ã¢ãã«ããã¯ã¹ãã£é²åœã®ç ç©¶ã«é©çšããæ³šææ©æ§ã®å°å ¥ãšæå€±é¢æ°ã®èšèšã調æŽããããšã§ãã¢ã«ãŽãªãºã ã®èå¥ç²ŸåºŠã確ä¿ããŸãããä»ã®æ·±å±€åŠç¿ã䜿çšãããã¯ã¹ãã£é²åœã®ç ç©¶ãšæ¯èŒããŠããã®ææ³ã¯ãªãœãŒã¹æ¶è²»ãåæžããã ãã§ãªããè€éãªãã¯ã¹ãã£ãæã€å€§èŠæš¡ãªææç»åããŒã¿ããŒã¹ã§ã®æ€èšŒãè¡ããææ³ã®æå¹æ§ã蚌æããŸããã
æ¯äžåã匵å®å€ããã¯AMD瀟ã§ãœãããŠã§ã¢éçºé¢é£ã®ä»äºã«åŸäºããŸãããäžæµ·å€§åŠã§ã®3幎éã®ç ç©¶ççæŽ»ã§ã匵å®å€ããã¯äžçæžåœåŠã³ãå°éç¥èãšç ç©¶å ±åèœåãåäžãããããã«åªåããŸããã圌ã¯ç±å¿ã«äººãšäº€æµããå€ãã®çŽ æŽãããåž«å ãå人ãåŸãŸãããç§ãã¡ã¯ã匵å®å€ãããå°æ¥ã®éã®ãã§åå¿ãå¿ããã䜿åœãå¿ã«çããå°é£ãä¹ãè¶ããåªåãç¶ããããšãé¡ã£ãŠããŸãã
è«æãžã®ãªã³ã¯ïŒResearch on Feature Information Processing Methods for Complex Material Images
æšç ããã¯ãå®åŸœäžå»è¯å€§åŠã§åŠå£«å·ãååŸãã2019å¹Žå ¥åŠã®ã³ã³ãã¥ãŒã¿ãŒã¢ããªã±ãŒã·ã§ã³æè¡ã®ä¿®å£«å·ãååŸããŸãããéè¶å Žå çã®æå°ã®ããšãäž»ã«ææç»åã®ã»ã°ã¡ã³ããŒã·ã§ã³ã«ã€ããŠç ç©¶ããŸããã3幎éã®åªåã®çµæãæšç ããã¯è€éãªãã¯ã¹ãã£ã«ç¹åããææã®åŸ®çްæ§é ã®ã»ã°ã¡ã³ããŒã·ã§ã³ãšèå¥ã®ææ³ãææ¡ããææç»åã®å°ããªãµã³ãã«ãããŒã¿ã®ååžã®äžåè¡¡ãè€éãªãã¯ã¹ãã£ã®åé¡ã«å¯ŸããŠäžå®ã®è²¢ç®ãããŸããããŸããææãžã§ãã ããŒã¿ããŒã¹ã®æ§ç¯ã«ãè²¢ç®ããŸããã忥åŸãæšç ããã¯äžèéä¿¡æ ªåŒäŒç€Ÿã§ã¯ã€ã€ã¬ã¹è£œåã®éçºã«åŸäºããäºå®ã§ãããŸããæšç ããã¯èªæžãå·çã奜ã¿ãç©æ¥µçã«ãµãŒã¯ã«æŽ»åã«åå ããè峿·±ãåªããæåž«ãåŠåãšç¥ãåããŸãããç ç©¶çæŽ»ã¯å±±ç»ãã®ãããªãã®ã§ãæ³£ãããç¬ã£ãããç²ããããããŸããããæçµçã«ã¯é äžã«ç«ã¡ãèªåã ãã®ç¹å¥ãªæ¯è²ãèŠãããšãã§ããŸãããå°æ¥ã®äººçã§åžžã«æ ç±ãæã¡ã忢ã«åã«é²ãã§ããããšãé¡ã£ãŠããŸãïŒ
倧åŠé¢çã®éã«åã
ææç»åã®äžã«ååšããå°ããªãµã³ãã«ãããŒã¿ååžã®äžåè¡¡ãè€éãªãã¯ã¹ãã£ã®åé¡ã解決ããããã«ãæ§ã ãªãã£ãŒãã©ãŒãã³ã°æè¡ãçµã¿åãããææç»åã®åŸ®çްæ§é ãèªåçã«ã»ã°ã¡ã³ããŒã·ã§ã³ããããšã§ãææãžã§ãã ããŒã¿ããŒã¹ã®æ§ç¯ã«ããŒã¿ã®åºç€ãæäŸããŸãã
-
ææç»åã»ã°ã¡ã³ããŒã·ã§ã³ã«ãããå°ããªãµã³ãã«ã®åé¡ã«å¯ŸåŠãããããæ·±å±€åŠç¿ãšã¹ãŒããŒãã¯ã»ã«ã«åºã¥ãææç»åã»ã°ã¡ã³ããŒã·ã§ã³ææ³ãææ¡ããŸãããææç»åã®é¡äŒŒãããã¯ã»ã«ã®ç¹æ§ãæããã¹ãŒããŒãã¯ã»ã«ã¢ã«ãŽãªãºã ã䜿çšããŠç©åœ¢ãããã¯ãååŸããããšã§ãå°ããªãµã³ãã«ã®åé¡ã解決ããŸãããæ¹è¯ãããDenseNetã§ã¯ãç¹åŸŽåŒ·åã¢ãžã¥ãŒã«ãé©çšããããšã§ãã¯ã¹ãã£ç¹åŸŽãä¿æããåé·ãªç¹åŸŽã®å¹²æžãé€å»ããŸããããŸããèšèšããããã©ã³ãžã·ã§ã³å±€ã®ã¢ãããµã³ããªã³ã°ææ³ã«ãããç¹åŸŽãããæ å ±ãããæ£ç¢ºã«åŸ©å ããããšãã§ããŸããã
-
ææç»åäžã®ããŒã¿ååžã®äžåè¡¡ã«å¯ŸåŠããããã2ã€ã®æå€±é¢æ°ã䜿çšããŠæ¹åããŸãããåé¡ã¿ã¹ã¯ã«ãããããŒã¿ååžã®äžåè¡¡åé¡ã«å¯ŸåŠãããããFocalæå€±ã«åºã¥ããŠPrecison Focalæå€±ãææ¡ããä¿¡é ŒåºŠã粟床ã«çœ®ãæããŠããµã³ãã«ã®åé¡ã®é£ãããããæ£ç¢ºã«åæ ãããããã¯ãŒã¯ã«ãã£ãŒãããã¯ããŠãã¬ãŒãã³ã°ããã»ã¹ãæé©åããŸãããã»ã°ã¡ã³ããŒã·ã§ã³ã¿ã¹ã¯ã«ãããããŒã¿ååžã®äžåè¡¡åé¡ã«å¯ŸåŠãããããDiceæå€±ã«åºã¥ããŠCE-Diceæå€±ãææ¡ãã亀差ãšã³ããããŒæå€±ãšDiceæå€±ãçµã¿åãããŠããã¬ãŒãã³ã°ããã»ã¹ãããã¹ã ãŒãºã«ããã»ã°ã¡ã³ããŒã·ã§ã³çµæãæé©åããŸããã
-
è€éãªãã¯ã¹ãã£ãæã€ææç»åã®æ£ç¢ºãªã»ã°ã¡ã³ããŒã·ã§ã³ãå®çŸããŸããã第3ç« ã§ææ¡ãããæ¹è¯ãããDenseNetã¯ãéèŠãªãã¯ã¹ãã£ç¹åŸŽãä¿æããåé·ãªç¹åŸŽãç©åœ¢ãããã¯ã®èªèã«å¹²æžããªãããã«ããŸããã第4ç« ã§ææ¡ãããæ¹è¯ãããFCNã¯ããã¯ã¹ãã£ãé¡äŒŒããææç»åã®æ£ç¢ºãªã»ã°ã¡ã³ããŒã·ã§ã³ãå®çŸããŸãããã«ã¹ã±ãŒãç¹åŸŽèåã¢ãžã¥ãŒã«ã¯ãé«å±€ãšäœå±€ã®æå³çç¹åŸŽãçµ±åããå€å°ºåºŠåŠç¿ã¢ãžã¥ãŒã«ã¯ãåŸ®çŽ°ãªæ å ±ãšã°ããŒãã«ãªã³ã³ããã¹ãæ å ±ãæ·±ãæãäžããŸããã¢ãã³ã·ã§ã³æ©æ§ã¢ãžã¥ãŒã«ã䜿çšããŠéèŠãªç¹åŸŽãããã«æ³šç®ããè³æºé 眮ãæé©åãã3ã€ã®ã¢ãžã¥ãŒã«ãçžäºè£å®çã«æ©èœããŸãã
è«æãžã®ãªã³ã¯ïŒResearch on segmentation and recognition methods for complex texture in material microstructures

ç驿¶ããã¯æ§æ Œã掻çºã§æãããæèåãé«ããçŽ æŽããã芪ååãæã¡ã人ãšã³ãã¥ãã±ãŒã·ã§ã³ãåãããšãåŸæã§ãããŸããå°é£ã«çŽé¢ããŠããèªå·±æ¹åãç¶ããåæ°ãæã£ãŠçŽé¢ããããšãã§ããŸããè¶£å³ã¯æžéãšæ è¡ã§ããäžæµ·å€§åŠã§ã®4幎éã®åŠç¿ã«ãããç驿¶ããã¯ç¥èã®å¹ ãšæ·±ããåºããã ãã§ãªããå€ãã®çŽ æŽãããæãåºãæ®ããŸãããä»åŸãç驿¶ãããèŒãããæªæ¥ãåãéããŠããããšãé¡ã£ãŠããŸãã
å«å®¶çããã¯å¥œå¥å¿æºçã§ãæ°ããç¥èãç©æ¥µçã«åŠã³ãå®è·µããããšãã§ããŸããåŠéšã®èª¬æäŒæŽ»åãéããŠéå çã®ç ç©¶åéãç¥ããèªãå çã®åŠéšçããŒã ã«å ãããå€ãã®ããšãåŠã³ãå°æ¥ã®åŠç¿ãä»äºã«é·ãå©ããšãªããŸããã


é®ç€Œæããã¯äººåœãããè¯ããå·éã§ãå°é£ã«çŽé¢ããŠãå æããåæ°ãæã£ãŠããŸããè¶£å³ã¯æ°Žæ³³ãã³ãŒããŒã飲ãããšã§ãèªæžã奜ãã§ãã圌ã¯äžæµ·å€§åŠã§ã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹ãšãã¯ãããžãŒã®ä¿®å£«å·ãååŸããéè¶å Žå çã®æå°ã®äžãç ç©¶çæŽ»ãç¶ããããšã«ãªããŸããä»åŸãé®ç€ŒæããããŸããŸãæé·ããç ç©¶çæŽ»ãå å®ãããããšãæåŸ ããŠããŸãã
鳿æããã¯å¥³æ§ã§ãäžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹ãšãã¯ãããžãŒã®åŠéšã§åŠå£«å·ãååŸããŸããã忥èšèšã®æéäžãéè¶å Žå çããå€ãã®æŽå©ãåããææåŠé¢ãšå ±åã§ãœãããŠã§ã¢éçºãè¡ããŸãããããŒã ã¡ã³ããŒãšç©æ¥µçã«ååãã广çãªã³ãã¥ãã±ãŒã·ã§ã³ãè¡ãããŒã ãã¬ã€ã€ãŒã§ãããæèãææ°ã§èå§æ§ãé«ããæ°ããããšãåŠã¶ããšã«ç±å¿ã§ãçè«ãšå®è·µãçµã³ã€ããããšãéèŠããŠããŸãããŸãã責任æãšèªå·±ç®¡çæèãããã人ãšããŠãçæ¯ãªæ 床ãæã£ãŠããŸããè¶£å³ã¯æ ç»éè³ãã²ãŒã ãæš¡åäœããªã©ã§ãã倧åŠã®4幎éãçªç¶ã®ãã³ãããã¯ã§ãååè¿ãã®ãã£ã³ãã¹ã©ã€ããå®¶ã§éããããšã«ãªããŸããããå€§åŠæä»£ã倧åã«ããŠããŸãã倧åŠç掻ã§ç¥èãåŸãã ãã§ãªããåçŽçãšæ·±ãåæ ãçµã¶ããšãã§ããŸãããæåŸã®åæ¥èšèšæéã«ã¯ãéå çã®ããŒã ã«åå ããéå çãšææåŠé¢ã®ååãåŸãŠãèªå·±åŠç¿ãšåäžãè¡ãããšãã§ããéåžžã«å æ ã«æã£ãŠããŸãã


嫿¿ç¥ºããã¯ä»äºã«çå£ã«åãçµã¿ãå¹ åºãè¶£å³ãæã£ãŠãããèªæžããã¥ãŒãžã«ã«ãªã©ã奜ãã§ããäžæµ·å€§åŠã§ã®4幎éã®åŠç¿ç掻ã§ãå°éç¥èãã¯ãããåŠçå£äœã®æŽ»åã«ç©æ¥µçã«åå ããå€ãã®åæ ãç¯ããŸãããä»åŸã嫿¿ç¥ºãããç¶ç¶çã«åªåããå°éçãªã¹ãã«ãçŽ é€ãåäžãããèªå·±è¶ è¶ãç®æãããšãæåŸ ããŠããŸãïŒ
ç§ãã¡ã®ããŒã ã¯ãäžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠç§åŠåŠé¢ã第äžåäœãšããéæ å§ã第äžèè ãéè¶èåææãéä¿¡èè ãšããè«æãææç»ååå²ã«å¿çšãããUNetããäžåœã®ã³ã¢ãžã£ãŒãã«ã§ãããèšç®æ©å¿çšç ç©¶ãã«æ²èŒããŸããããŸãããã®ç ç©¶ã«ã¯ãç§ãã¡ã®ããŒã å ã®é³äŸšå·å çãã¯ãããšããæå°æå¡ã®ãæå°ãããã ããŸããã
ææç»åã®åŸ®çްæ§é ã¯éåžžã圢ç¶ãç°ãªãããã¯ã¹ãã£ãè€éã§ãå¢çããŒããããšããç¹åŸŽããããææç»ååŠçåéã«ãããæ·±å±€åŠç¿ææ³ã®çºå±ãå¶éããŠããŸããæ¬ç ç©¶ã§ã¯ãGraph-UNetãšåŒã°ããææ³ãææ¡ããUNetãšã°ã©ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ãèåããããšã§ãå°èŠæš¡ãµã³ãã«ã®ææç»åèªååå²ã®èª²é¡ã解決ããŸãããæ¬ææ³ã§ã¯ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®å€æ¬¡å ç¹åŸŽã®èåãšã¹ãããæ¥ç¶ã®ã¢ã€ãã¢ãã°ã©ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã«ç§»æ€ããã°ã©ãç³ã¿èŸŒã¿ãšã°ã©ã泚æã®å¹æçãªçµã¿åãããå®çŸããç¹åŸŽããããšã°ã©ãæ§é ã®çžäºå€æãå®çŸããæ±çšã¢ãžã¥ãŒã«ãæ§ç¯ããŸãããææç»åããŒã¿ã»ããã§ã®æ¯èŒå®éšãšæ¶èå®éšãè¡ããGraph-UNetã®åå²çµæãå€ãã®å é²çãªææ³ãããåªããŠããããšã蚌æãã倿§ãªæææ§é ãæ£ç¢ºã«èªèããããšãã§ããæææ§é ãšæ§èœã®é¢ä¿ãæ¢æ±ããããšã«è²¢ç®ããŸããã
è«æãžã®ãªã³ã¯ïŒGraph-UNet applied in material image segmentation
ç§ãã¡ã®ããŒã ã¯ãäžæµ·å€§åŠåŠå ±ïŒèªç¶ç§åŠçïŒã«ã軜éãããã¯ãŒã¯ã䜿çšããé²åœã©ãã«æ€åºã¢ã«ãŽãªãºã ããçºè¡šããŸããã ãã®è«æã¯ãäžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠç§åŠåŠé¢ã第äžåäœãšãã修士課çšã®åŒµå®å€ã第äžèè ãéè¶èææãéä¿¡èè ãšããŠããŸãããŸãããã®ç ç©¶ã«ã¯ãé³äŸšå·å çãå·«éæ³¢å çã®å€§ããªãµããŒããåããŸããã
è¿å¹Žãåœé çåã«ããçµæžçæå€±ã¯å¹Žã å¢å ããåœé æè¡ã¯ãŸããŸãåäžããŠããŸããé²åœæ€æ»ã®åé¡ã¯ãç ç©¶è ã®åºç¯ãªé¢å¿ãéããŠããŸããçŸåšã®é²åœæ€æ»æ¹æ³ã¯ãèšç®éãå€ãããªãœãŒã¹ãå€ãå æããæ€æ»ã«æéãããããšããåé¡ã解決ããããã«ãæ¬ç ç©¶ã§ã¯ã軜éãããã¯ãŒã¯ã䜿çšããé²åœã©ãã«èªèæ€åºã¢ãã«ãææ¡ããŸããã ãã®ã¢ãã«ã¯ã圢ç¶ãšãã¯ã¹ãã£ã®èªèã«ããããã軜éãªç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNïŒã䜿çšããŠããŸãã圢ç¶èªèã®ã¿ã¹ã¯ã§ã¯ãããŒãªã³ã°å±€ã®ãµã€ãºãæžãããŠã¢ãã«ã®åŠç¿èœåã匷åãããã¯ã¹ãã£åé¡ã®ã¿ã¹ã¯ã§ã¯ãå調泚æïŒcoordinate attention, CAïŒã¢ãžã¥ãŒã«ã䜿çšããŠåäžã®ç¹åŸŽãããã®æ å ±ååŸã匷åããŠããŸãããŸããæå€±é¢æ°ãèšèšããŠãçåœã®ãµã³ãã«èå¥èœåã匷åããæåŸã«ãç¹åŸŽãã¯ãã«ã®æå€§å€ã䜿çšããŠäºæž¬çµæãåŸãããšãã§ããŸãã å®éšçµæãããææ¡ææ³ã¯å šäœçãªè奿€åºç²ŸåºŠã95.67ïŒ ã«éããåŸæ¥ã®æ¹æ³ã«æ¯ã¹ãŠæ€åºæéãå€§å¹ ã«ççž®ãããŠããããšã瀺ãããŸããã
æè¿ã®ææãšããŠ-人èžé®æ¡å Žé¢ã§ã®è¡šæ èªèã«é¢ãããã®ãæããããŸã
æä»¬å¢éåšåœé æåãDisplaysãïŒIFïŒ2.167ïŒäžåšçº¿å衚论æâFacial Expression Recognition in Facial Occlusion Scenarios: A Path Selection Multinetworkâããã®è«æã¯ãäžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠç§åŠåŠé¢ã第äžåäœãšããé®ç€Œæã第äžèè ãéè¶èåææã第äºèè ããã³éä¿¡èè ãšããŠããŸãã
仿¥ããŸã ç¶ããã³ãããã¯äžã§ã¯ãå€åºæã«ãã¹ã¯ãççšããããšãåœããåã®ç¶æ ã«ãªããŸããããã¹ã¯ã¯ã錻ãå£ãèŠããããé¡ã®ç¹åŸŽãé ããŠããŸããŸãããŸãããµã³ã°ã©ã¹ããããããåžœåããã¶ã£ãããç©äœã®é°åœ±ãããå ŽåããããŸãããããã®é¡ã®é®èœã¯ã衚æ èªèã«äžå®ã®å°é£ããããããŸããæ¬è«æã§ã¯ãäžååãäžååãããã³ç®ãèŠã3ã€ã®äžè¬çãªé¡ã®é®èœã·ãŒã³ãåºã«ããã¹éžæåã®ãã«ããããã¯ãŒã¯æ§é ãææ¡ããŠããŸãã ãã®æ¹æ³ã«ã¯2ã€ã®éšåããããŸãã第1éšåã¯ããã«ããããã¯ãŒã¯æ§é ã§ãããå ã®ããŒã¿ã»ãããã©ãã«åäœã§3ã€ã®ãµãããŒã¿ã»ããã«åå²ããåãµãããŒã¿ã»ããã«ã¯å ã®ããŒã¿ã»ããã®äžéšã®ã©ãã«ãåŒãç¶ããã3ã€ã®ãµããããã¯ãŒã¯ãããããèšç·ŽãããŸãã第2éšåã¯ããã¹éžæåŒã®ãã«ããããã¯ãŒã¯çµ±åæ¹æ³ã§ãããåãµãããŒã¿ã»ããã«å«ãŸããç»åãåãã©ãã«ãšããŠæ±ããæ°ããããŒã¿ã»ããã«å ¥ããåæãããã¯ãŒã¯ãèšç·ŽããŸããåæãããã¯ãŒã¯ãåºåããäºæž¬çµæã«åºã¥ããŠãåãããã¯ãŒã¯ã®1ã€ãéžæããŠæçµçãªäºæž¬çµæãåºåããŸãã æ¬è«æã§ã¯ãFer2013ãJaffeãKDEFãRAF-DBã®4ã€ã®äžè¬çãªå ¬é衚æ ããŒã¿ã»ãããåãããŠããã倧ããªããŒã¿ã»ããã«ãŸãšãããã¬ãŒãã³ã°ãµã³ãã«æ°ãå¢ãããŸããããããŠãé®èœåŠçãæš¡æ¬ããå®éšçµæã§ã¯ãæ¬ææ³ãé®èœãããé¡ã®è¡šæ ã广çã«èªèã§ããããŸããŸãªé¡ã®é®èœã·ãŒã³ã«é©çšã§ããããšã瀺ãããŸãããããã«ããã衚æ èªèãããæ£ç¢ºãã€ä¿¡é Œæ§ã®é«ããã®ã«ãªããããå€ãã®ã·ãŒã³ã§äœ¿çšã§ããããã«ãªããŸã
è«æãžã®ãªã³ã¯ïŒhttps://doi.org/10.1016/j.displa.2022.102245
ãããžã§ã¯ãã¢ãã¬ã¹ïŒhttps://github.com/han-yuexing/A-Path-Selection-Multinetwork
ç§ãã¡ã®ããŒã ã¯ãã³ã¢ãžã£ãŒãã«ãäžæµ·å€§åŠåŠå ±ïŒèªç¶ç§åŠçïŒãã§ããåºäºæ°ååŸåå€çææ¯çç±é²è·ã³ãŒãã£ã³ã°è¡šé¢åœ¢ç¶ç¹åŸŽèªèæ¹æ³ããšé¡ããè«æãçºè¡šããŸãããæ¬è«æã¯ãäžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠç§åŠåŠé¢ã第äžåäœãšãã修士課çšã®åå®è¹ã第äžèè ãšããéè¶èææãéä¿¡èè ãšããŠããŸãããŸãããã®ä»äºã¯ãæŸæ¯ ææã汪èªå«£ææã®å€§ããªæ¯æŽãåããŸããã


ç±é²è·ã³ãŒãã£ã³ã°è¡šé¢ã®åœ¢ç¶ç¹åŸŽã®äººå·¥çãªæ€åºã«ã¯è€éãã倧ããªèª€å·®ãªã©ã®æ¬ ç¹ããããããæ©æ¢°ããžã§ã³ãå©çšããŠç±é²è·ã³ãŒãã£ã³ã°è¡šé¢ã®åœ¢ç¶ç¹åŸŽãèªåèªèãã圢ç¶ç¹åŸŽãã©ã¡ãŒã¿ãèšç®ããæ¹æ³ãææ¡ããŸããæ¬ç ç©¶ã§ã¯ãæ°åŠåœ¢æ åŠã«åºã¥ãå±€ç¶èŒªéã®èªåæœåºãšåœ¢ç¶ãã©ã¡ãŒã¿ã®èšç®ãè¡ããæå€§ã¯ã©ã¹é忣æ³ã䜿çšããŠ2å€åå²éŸå€ãæ±ããå¹³æ»åãã£ã«ã¿ãšåœ¢æ åŠæäœã䜿çšããŠãã€ãºãé€å»ããåäžã®å±€ã®é£çµæ§ã確ä¿ããŸããèŒªéæœåºã«ãããå±€ã®ç«¯éšæ å ±ãååŸããæåŸã«æœåºããã茪éã«åºã¥ããŠå±€ã®å®æž¬ãã©ã¡ãŒã¿ãèšç®ããŸããåæã«ãç±é²è·ã³ãŒãã£ã³ã°äžã®ã¯ã©ãã¯ã®èªåèªèãšé·ãã®èšç®ãéæŽæ¢çŽ¢ã«åºã¥ããŠè¡ããŸãããŸããç»åã®å±€ãèªèããŠé€å»ããéããæŒç®ã«ããã¯ã©ãã¯ã®ä¿®åŸ©ãè¡ããç»å现ç·åã«ããã¯ã©ãã¯ã®ã¹ã±ã«ãã³ãååŸããŸãããããŠãåã¯ã©ãã¯ãæ¢çŽ¢ããé·ããèšç®ããŸããçµæã¯ãææ¡ãããæ¹æ³ã«ããå±€ã®èŒªéæ€åºãšã¯ã©ãã¯ã®èªèã®å¹æãè¯å¥œã§ããã€ãºèæ§ãé«ãã圢ç¶ç¹åŸŽãã©ã¡ãŒã¿ãæ£ç¢ºã«èšç®ã§ããããšã瀺ããŠããŸããããã«ãããç±ãã©ãºãã¹ãã¬ãŒã«ããæº¶èããç²åã®åºæ¿è¡šé¢ãžã®æ²çéçšã®ç ç©¶ã«éèŠãªè²¢ç®ãæåŸ ãããŸãã
è«æãžã®ãªã³ã¯ïŒhttps://www.journal.shu.edu.cn/CN/10.12066/j.issn.1007-2861.2371
ç§ãã¡ã®ããŒã ã¯ãè¶ åçŽ ã¢ã«ãŽãªãºã ãšæ·±å±€åŠç¿ãåºã«ããè€éãªãã¯ã¹ãã£ç»åã®èªèãšã»ã°ã¡ã³ããŒã·ã§ã³ã«é¢ããè«æããåœéèªãComputational Materials ScienceãïŒIFïŒ3.3000ïŒã«ãªã³ã©ã€ã³ã§çºè¡šããŸãããæ¬è«æã¯ãäžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠç§åŠåŠé¢ã第äžåäœãšããéè¶èåææã第äžèè ãšããããŒã ã¡ã³ããŒã®é³äŸšå·æåž«ãéä¿¡èè ãšããŠããŸããå€å€§ãªè²¢ç®ãããæšç ãããåããèè ãšããŠãè«æãå·çããŸããã
ææã®ç»åã¯éåžžãååãªæ°ã®ãã¬ãŒãã³ã°ãµã³ãã«ãäžè¶³ããŠãããããæ©æ¢°åŠç¿æè¡ã深局åŠç¿æè¡ã®ææç»åãžã®é©çšã劚ããŠããŸããããã§ããã®ç ç©¶ã§ã¯ãææç»åã®éèŠãªç¹æ§ã§ããåçžæ§ã®é«ããã¯ã»ã«ãæããè¶ åçŽ ãšæ·±å±€åŠç¿ãçµã¿åãããææç»åã®åŸ®èŠçæ§é ã®èªèãšã»ã°ã¡ã³ããŒã·ã§ã³ææ³ãææ¡ããŸããããã®ææ³ã¯ã3ã€ã®ã¹ãããã«åãããŠããŸãããŸããç©åœ¢ãããã¯ãååŸããŸããã€ãŸããå€å žçãªè¶ åçŽ ã¢ã«ãŽãªãºã ã§ããSLICã¢ã«ãŽãªãºã ã䜿çšããŠãç°ãªãæ°ã®è¶ åçŽ ãååŸãããã®åŸãåè¶ åçŽ ããæå€§ã®å æ¥ç©åœ¢ãããã¯ãæœåºããŸããæ¬¡ã«ãç©åœ¢ãããã¯ãèªèããŸããå ·äœçã«ã¯ããããã®ç©åœ¢ãããã¯ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNïŒã«å ¥ããæ¬ç ç©¶ã§ã¯DenseNetã䞻幹ãããã¯ãŒã¯ãšããŠéžã³ãæ¹è¯ããŠèªèããŸãããŸããææç»åã«ãããååžã®äžåäžæ§ãããã€ãã®çžãåºå¥ããã®ãå°é£ãªåé¡ããããããæ¬ç ç©¶ã§ã¯ãFocal lossãéžæããŠæ¹è¯ããææç»åã«é©å¿ãããŸãããæåŸã«ãåãã¯ã»ã«ã®ã¯ã©ã¹ãäºæž¬ããããšã§ãç»åå šäœã®ã¯ã©ã¹ãåºåããŸãããã¬ãŒãã³ã°ãçµäºããåŸãã¹ããããµã€ãº1ããµã€ãºl*lïŒlã¯å¥æ°ïŒã®ã¹ã©ã€ããŠã£ã³ããŠã䜿çšããŠãn*nãµã€ãºã®ç»åå šäœã«ã¹ã©ã€ãããŠãn*nåã®ç©åœ¢ãããã¯ãååŸããã¢ãã«ã¯ãããã®ç©åœ¢ãããã¯ã®ã¯ã©ã¹ãäºæž¬ããåãã¯ã©ã¹ã®ãã¯ã»ã«ãæ¥ç¶ããããšã§ãææç»åã®åŸ®èŠçæ§é ã®èªèãšã»ã°ã¡ã³ããŒã·ã§ã³ã®ã¿ã¹ã¯ãå®çŸããããšãã§ããŸãã
è«æãžã®ãªã³ã¯ïŒhttps://doi.org/10.1016/j.commatsci.2022.111398
è«æãžã®ãªã³ã¯ïŒhttps://www.sciencedirect.com/science/article/pii/S0927025622001690?dgcid=coauthor
ç§ãã¡ã®ããŒã ã¯ãã©ãã³å€æãšPPHTãåºã«ãããã¯ã垯ã®èªåæ€åºã«é¢ããè«æããåœéèªãJournal of MicroscopyãïŒIFïŒ1.758ãäžç§é¢4åºïŒã«ãªã³ã©ã€ã³ã§çºè¡šããŸãããæ¬è«æã¯ãäžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠç§åŠåŠé¢ã第äžåäœãšããéè¶èåææã第äžèè ããã³éä¿¡èè ãšããæç¿ç¥ºæ°ãæŸæ¯ æ°ã忢Šçæ°ãå€å€§ãªè²¢ç®ãããŸããã
æ¶äœæ§é ãšé åæ å ±ã¯ãEBSDïŒé»åããã¯æ£ä¹±è¡æïŒãã¿ãŒã³ã®åæã«ãã£ãŠååŸããããšãã§ãããããã®ãã¿ãŒã³ã¯EBSDè£ çœ®ã«ãã£ãŠååŸãããŸããåŸãããæ å ±ã®ä¿¡é Œæ§ãšæ£ç¢ºæ§ã¯ãEBSDãã¿ãŒã³ã®ã¹ãã©ã€ããšäº€ç¹ã®äœçœ®ã«äŸåããŸãããã®ç ç©¶ã§ã¯ãEBSDãã¿ãŒã³ïŒãã¯ããã³ãïŒãšäº€ç¹ã®äœçœ®ãèªåçã«ååŸããæ¹æ³ãææ¡ããŠããŸãããã®æ¹æ³ã§ã¯ãRadon倿ãšçޝç©ç¢ºçãã倿ã䜿çšããŠããã¯ããã³ãã®ãšããžã®çŽç·ãšç·åãããããæ€åºããŸããæ¬¡ã«ãç·åã®ç«¯ç¹ã䜿çšããŠããã¯ããã³ããåæ²ç·ã§ãã£ãããããããšãã§ããŸãããããã®çµæã¯ããã¯ããã³ãã®æ å ±ãå®éåããããšãã§ããŸããå®éšçµæã¯ããã®æ¹æ³ãå ç¢ã§ãããããæ£ç¢ºãªãã¯ããã³ããšäº€ç¹ãæ€åºã§ããããšã瀺ããŠããŸãã
è«æãžã®ãªã³ã¯ïŒhttp://dx.doi.org/10.1111/jmi.13079