
æ¹è»ãç·ãæ¬ç§ãšä¿®å£«ã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ã«é²åŠããçŸåšã¯é»åæ å ±å°æ»ã§ãããèšèã¯é¢çœããæ åºŠã¯ç©æ¥µçã§æ¥œèгçã§ãç¡åé ãšæœè±¡çãªãã®ã奜ãã§ãæ¥åžžã®è¶£å³ã¯ãããã³ãã³ãã©ã³ãã³ã°ãåºæ¢ãã§ãã倧åŠé¢çã®åŠæ¥æéäžã«èªåã®èœåãå šé¢çã«éããããšãã§ããŠãå ±ã«é²æ©ããåŠåãäžå€«ã«ããŠãäœãäžå€«ã«ãããšåæã«å°éã®åŠè¡èœåãè²æããããšãã§ããããšãæãã§ããŸãã
鳿éãç·ãæ¬ç§ã¯æ±è倧åŠã³ã³ãã¥ãŒã¿ç§åŠã»éä¿¡å·¥åŠé¢IoTå·¥åŠç§ã忥ããçŸåšã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿åŠé¢ä¿®å£«èª²çšã«åšç±ããæ¥œèгçã§åäžå¿ããããæãããã¬ã³ããªãŒã§ãã¹ããŒããã²ãŒã ãªã©ã奜ãã§ãã倧åŠé¢ã®æ®µéã§èªåã®ç§åŠç ç©¶ã®ã¬ãã«ãé«ããããŒã ã®åååãé«ããã¿ããªãšäžç·ã«å ¥ã£ãŠã»ããã


ææ¥ãç·ãæ¬ç§ã¯æŠæŒ¢ç工倧åŠãçŸåšã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿ãµã€ãšã³ã¹ïŒãã¯ãããžãŒå°æ»ã®ä¿®å£«èª²çšã«åšç±ãæ®æ®µã¯ãããã³ãã³ã奜ãã§ãäžäººã§ãžã§ã®ã³ã°ããããåªç§ãªã¯ã©ã¹ã¡ã€ããšã®äº€æµã楜ãããããã奜ãã§ãå°ãå®ç§äž»çŸ©è ã§ãç©äºãæé«ã®ã¬ãã«ã§ãããããæ°ããã¹ã¿ãŒãå°ç¹ã§ãç§åŠç ç©¶ãããŸããããšãšãã«ãè¯ãäœãæã¡ãçãšæ¥œãã倧åŠé¢ç掻ãéããããšæããŸãã
æ¡æšãç·ãæ¬ç§ã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿åŠé¢äººå·¥ç¥èœå°æ»ã忥ããçŸåšã¯ã³ã³ãã¥ãŒã¿ãµã€ãšã³ã¹ïŒãã¯ãããžãŒå°æ»ã®ä¿®å£«èª²çšã«åšç±ãæããæ§æ Œã§ãååãã§æ¥œèгçãèª å®ã§ã責任æãããã倧åŠé¢ç掻ã§èªåã®å°éèœåãšå®è·µèœåãé«ããåŠç¿ãšæ¢çŽ¢ã®äžã§æé·ãç¶ããããšãæãã§ããŸãã


匵æè»ãæ±è倧åŠã³ã³ãã¥ãŒã¿ç³»ã忥ããä»ã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿ãµã€ãšã³ã¹ïŒãã¯ãããžãŒå°æ»ã§ä¿®å£«èª²çšãå匷ããŠããŸããæ§æ Œçã«ã¯ãå åçãšå€åçã®ç¹è³ªã䜵ãæã€äººã§ãã人ãšäº€æµããããšã奜ãã§ãããèªåã®äžçã«æ²¡é ããããšã楜ããã§ããŸããè¶£å³ã¯åºç¯å²ã§ãäž»ã«çæãããŒãã²ãŒã ã奜ãã§ããããããã®æ¥ã ã§ãçãããšäžç·ã«åŠè¡ã®æåç·ãæ¢æ±ããå ±ã«é²æ©ããããšãæãã§ããŸããç§ãæžåœã«åŠã³ãèªåã®åãç©æ¥µçã«è²¢ç®ããŠãããŸãã
è¶å¯ 康ãç·ãæ¬ç§ã¯åžžççå·¥åŠé¢ããŒã¿ç§åŠãšããã°ããŒã¿æè¡åŠç§ã忥ããçŸåšäžæµ·å€§åŠã³ã³ãã¥ãŒã¿ç§åŠãšæè¡åŠç§ã§ä¿®å£«èª²çšã«éã£ãŠãããç§ã¯ç©æ¥µçã§æ¥œèгçã§ãèããã®ã奜ãã§ãããããã³ãã³ããã¹ã±ããããŒã«ãªã©ã®çæã¯å¥œãã ãèŠæã§ãå€ã®æ£æ©ã奜ãã ã倧åŠé¢çã®éã«èªåã®å°éèœåãé«ããããå€ãã®å人ãšäžç·ã«é²æ©ããããšãæãã§ããã

æ± æŽ³å©·ïŒæ¬ç§ã¯äžæµ·å€§åŠã忥ãã2021幎ããäžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ã§åŠè¡å修士倧åŠé¢çãå°æ»ããŠãããæ± λ婷ããã¯æ¬ç§å€§åŠ4幎çããéè¶èç ç©¶ã°ã«ãŒãã«å ¥ããç»ååŠçã«é¢ããæè¡ãšå¿çšãåŠã³ãéå çã®æå°ã®äžã§ã以äžã®ç ç©¶ãç¶ããæšé²ããã
-
ææç»åã®æå³åå²ã«ååšããå°ãµã³ãã«ãšãã¯ãæ§é ç¹åŸŽãè€éã§ããåé¡ã«å¯ŸããŠãç¹åŸŽãã©ããããšåå亀差泚æåã«åºã¥ãäºå岿å³åå²ãããã¯ãŒã¯ãææ¡ããããã®ãããã¯ãŒã¯ã¯ããã©ã€ããªãã©ã³ããšã»ã«ã³ããªãã©ã³ãã«åãããŠããŸããäž»ãã©ã³ãã¯ãç¹åŸŽãã©ãããã¢ãã«ã䜿çšããŠå€å±€çãªç»åç¹åŸŽãéçŽããŠè©³çްæ å ±ã匷åãããã»ã«ã³ããªãã©ã³ãã¯ãããã¯ããŒã³ãããã¯ãŒã¯ã®äœå±€ãã£ãŒãã£ã䜿çšããŠç»åãåå²ããã»ã«ã³ããªãããã¯ãŒã¯ã¯ãã¯ã¹ãã£ãšå¢çæ å ±ãåŠç¿ããããã«ãã¿ã¹ã¯ç£èŠãšãã«ãã¹ã±ãŒã«ç¹åŸŽã®ååã®äžã§ããã®æ¹æ³ã¯æ¯èŒã¢ãã«ã«æ¯ã¹ãŠãè€æ°ã®å°ãµã³ãã«ææç»åããŒã¿ã»ããäžã§æé©ãªæ§èœãåŸãã
-
ææç»åã€ã³ã¹ã¿ã³ã¹åå²ã«ãããé¡èãªå°ãµã³ãã«åé¡ã«å¯ŸããŠãæ¢åããŒã¿ã®å©çšçãé«ããããšãããå€ã¢ãŒãèåãšåœã©ãã«æè¡ã«åºã¥ãã€ã³ã¹ã¿ã³ã¹å岿¹æ³ãææ¡ããããã®æ¹æ³ã¯ç»åãšããã¹ãã®å€ã¢ãŒãããŒã¿ãèåããããšã«ãã£ãŠããããã¯ãŒã¯ã®ç©äœåé¡ãäœçœ®æ±ºããåå²ã®ç²ŸåºŠãé«ãããæ¬è«æã§ã¯èšç·Žã2段éã«åããïŒå šç£ç£èšç·Žãšåç£ç£èšç·Žãåç£ç£èšç·Žã®æ®µéã§ã¯ãåœã©ãã«æè¡ãçšããŠã衚瀺ãããŠããªãããŒã¿ãç£ç£ã¢ãã«ã®æé©åã«åå ããããå€ã¢ãŒãæ å ±ãš2段éèšç·Žã®ååã®äžã§ããã®æ¹æ³ã¯æ¯èŒã¢ãã«ã«æ¯ã¹ãŠãå€çš®ã®å°ãµã³ãã«ã€ã³ã¹ã¿ã³ã¹åå²ã·ãŒã³ã«ãããŠåªããæ§èœãåŸãã
-
2205äºçžã¹ãã³ã¬ã¹éŒé¡åŸ®é¡ç»åã«å¯ŸããŠãçµ±èšåææ¹æ³ãèšèšããŠææç»ååå²çµæãšæææ§èœã®å çé¢ä¿æåã宿ãããæ¬è«æã¯ããããæå³åå²çµæåã³å®äŸåå²çµæã«åºã¥ããŠãææçµéšåŒãçšããŠã人工åæçµæã«è¿ããã¯ãæ§é ã®æé·éåºŠãšæææ§èœå€åæ æ³ãå¹ççãã€æ£ç¢ºã«ç²åŸããã
忥åŸãæ± æŽ³å©·ããã¯å°ç±³ã«å ¥ã£ãŠã«ã¡ã©ã¢ã«ãŽãªãºã ã®ä»äºã«åŸäºãããæ± 掳婷ããã¯äžæµ·å€§åŠã®3幎éã®å€§åŠé¢ççæŽ»ã®äžã§åªåããŠå匷ããçå£ã«ç§åŠç ç©¶ããçµ¶ããèªåã®å°éç¥èã匷åããŠã幞éã«ãå€ãã®è¯åž«è¯åãšç¥ãåããŸãããæ± 掳婷ãããæªæ¥ã®éã§åå¿ãå¿ããã䜿åœãéèšããæ£ãåããç 磚ããŠåé²ããŠã»ããã
è«æãžã®ãªã³ã¯ïŒå°æ ·æ¬åŸåå岿¹æ³ç ç©¶åå ¶åšæææ§èœææççåºçš
äžå æ°ãæ¬ç§ã¯æ¡æç工倧åŠã忥ãã2021幎9æããäžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ã§ä¿®å£«èª²çšå€§åŠé¢çãå°æ»ãã課é¡ã°ã«ãŒãã«å å ¥ããåŸãéè¶èå çã«åŸã£ãŠåœ¢ç¶ç©ºéçè«ãšç»åç¹åŸŽã®å¢åŒ·ãªã©ã®é¢é£æè¡ãšå¿çšãåŠç¿ãããéå çã®ãæå°ã®ããšã以äžã®ç ç©¶ã宿ããŸããã
-
å°ãµã³ãã«ç»åã·ãŒã³ã«ãããå©çšå¯èœãªããŒã¿ã®å°ãªããšå€æ§æ§ã®äžè¶³ã®ç¹åŸŽã«å¯ŸããŠãäºå圢ç¶ç©ºéæž¬å°æ²ç·ã«åºã¥ãç»åç¹åŸŽã®å¢åŒ·æ¹æ³ãææ¡ããFAGC-PSSïŒFeature Augmentation on Geodesic Curves in Pre-Shape SpaceïŒãšç¥ç§°ããããŸãæ·±ãåŠç¿ã¢ãã«ãçšããŠå°ãµã³ãã«ç»åã®ç¹åŸŽãæœåºããã圢ç¶ç©ºéçè«ã«åºã¥ããŠç»åç¹åŸŽã®æ¬¡å ãåäžããããããå圢ç¶ç©ºéã«æåœ±ãããããããã®ã«ããŽãªã®ç¹åŸŽããŒã¿ã«å¯Ÿå¿ããæž¬å°æ²ç·ãæ§ç¯ãããæåŸã«æé©ãªæž¬å°æ²ç·ã«æ²¿ã£ãŠç¹åŸŽããŒã¿ãçæããç»ååŠçã¢ãã«ã®èšç·Žã«çšããããã®æ¹æ³ã®é©æ°ã¯ä»¥äžã®3ç¹ãå«ãïŒç¬¬äžã«ãå°ãµã³ãã«ç»åã®ç¹åŸŽåŒ·åãå®çŸããã¢ãã«ãèšç·Žãµã³ãã«ã®ååžãšèŠåãå šé¢çã«çè§£ããã¢ãã«ã®ããã¹ãæ§ãšä¿¡é Œæ§ãé«ããã®ã«åœ¹ç«ã€ã第äºã«ãææ¡ããFAGC-PSSç¹åŸŽå¢åŒ·æ¹æ³ã¯ãæ©æ¢°åŠç¿ã®åé¡ã¢ãã«ãšçµåããããšã§ããè¯ãçµæãåŸãããšãã§ãããªã©ãè€æ°ã®äžæµã¿ã¹ã¯ã«å¿çšããããšãã§ããã第äžã«ãå°ãµã³ãã«ç»ååé¡ã¿ã¹ã¯ã®äº€å·®ãšã³ããããŒæå€±é¢æ°ã«ã©ã³ãã 確ç颿°ãšåœ±é¿å åãèšèšããçæç¹åŸŽãšç»åç¹åŸŽãã¢ãã«ã«äžãã圱é¿ããã©ã³ã¹ãããããšãã§ããã
-
ææç»åã«å°ãµã³ãã«ãšæææ§èœäºæž¬ç²ŸåºŠããããªãç¹åŸŽãããããšã«å¯ŸããŠãæ¬è«æã¯FAGC-PSSã«åºã¥ãæææ§èœäºæž¬æ¹æ³ãææ¡ããããã®æ¹æ³ã¯FAGC-PSSã®äžæµã¿ã¹ã¯ãã¬ãŒã æ§é ãèšèšããåœã©ãã«æ©æ§ãçµåããããšã«ãããå°ãµã³ãã«ææç»åäžã®æææ§èœäºæž¬ã¿ã¹ã¯ãå®çŸãããå ·äœçãªããã»ã¹ã¯4ã€ã®ã¹ããããå«ãïŒææç»åç¹åŸŽã®æœåºãFAGC-PSSãéããŠç¹åŸŽãçæããåœã©ãã«æ©æ§ãå©çšããŠç¹åŸŽã®ããã«æ§èœå€ã©ãã«ã衚瀺ããæåŸã«åŒ·åç¹åŸŽãå©çšããŠæææ§èœäºæž¬ã¢ãã«ãèšç·Žããããã®æ¹æ³ã®é©æ°ã¯ä»¥äžãå«ãïŒäºæž¬æææ§èœã¢ãã«ã«FAGC-PSSã¢ãžã¥ãŒã«ãå°å ¥ããŠãç¹åŸŽããŒã¿ã®å€æ§æ§ãšè€éæ§ã匷åãããçæãããç¹åŸŽããŒã¿ã«å¯ŸããŠæ¬äŒŒã©ãã«æ©æ§ãèšèšããŠå¯žæ³ãä»ãããå®éšã®çµæãç°ãªãçš®é¡ã®æææ§èœäºæž¬ä»»åã«å¯ŸããŠããã®æ¹æ³ã¯è¯å¥œãªæå¹æ§ãšæ®éæ§ã瀺ãããšãã§ããããšãæããã«ãªã£ãã
忥åŸãäžå æ°åŠåã¯ãã¡ãŒãŠã§ã€äŒç€Ÿã«å ¥ç€Ÿãããäžå æ°åŠåã¯äžæµ·å€§åŠã®3幎éã®å€§åŠé¢ççæŽ»ã®äžã§åªåããŠåŠç¿ããç§åŠç ç©¶ãããžã§ã¯ãã«åå ããåªããããã°ã©ãã³ã°æèœãšã¢ã«ãŽãªãºã éçºèœåã瀺ãããè€éãªæè¡åé¡ã«å¯ŸããŠãè¿ éã«åæããæå¹ãªè§£æ±ºçãææ¡ããããšãã§ãã匷ãç¬ç«ç ç©¶èœåãšé©æ°æèã瀺ãããäžå æ°å ¥çãæªæ¥ã®éã§åå¿ãå¿ããã䜿åœããã£ããèŠãã忢ã«åé²ããããèŒãããåéãåãéãããšãæãã§ããã
è«æãžã®ãªã³ã¯ïŒåºäºåœ¢ç¶ç©ºéŽç论çåŸåç¹åŸå¢åŒºåå ¶åšæææ§èœé¢æµäžçåºçš
éæå¡æ°ã¯ã2021幎9æã«äžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠã»ç§åŠåŠé¢ã«å ¥åŠãã修士課çšã®å€§åŠé¢ç段éã®åŠç¿ç涯ãéãã課é¡ã°ã«ãŒãã«åå ããåŸãé³åå·æ°ãšéè¶èæ°ã®2人ã®å çã«åŸã£ãŠãææã®æ§èœãäºæž¬ããããã«æ·±åŠç¿ã«åºã¥ããŠææç»åãåŠçããç ç©¶ã«å°å¿µããã2人ã®å çã®æå°ã®ããšã以äžã®ç ç©¶å 容ã宿ããã
1.ã°ããŒãã«ã»ããŒã«ã«ç¹åŸŽæœåºãå€ç¹åŸŽèåã«åºã¥ãæ·±åŠç¿äºæž¬æææ§èœãããã¯ãŒã¯ãæ§ç¯ããããã®ãããã¯ãŒã¯ã¯2åå²ãã«ãã¹ã±ãŒã«ã®æ§é èšèšãæ¡çšããã°ããŒãã«åå²ãããã¯ãŒã¯ãšã°ããŒãã«éšååå²ãããã¯ãŒã¯ãçšããŠãããããã®ææåŸ®çްæ§é ç»åã«å¯ŸããŠã°ããŒãã«ãšããŒã«ã«ç¹åŸŽã®æœåºãè¡ããããããã®ç¹åŸŽã®ã¢ããªã³ã°éçšãç Žå£ããããšã¯ãªããã°ããŒãã«ãã©ã³ããããã¯ãŒã¯ã«å€é èªçºåã¡ã«ããºã ãçµã¿èŸŒã¿ãç¹åŸŽå³ãè€æ°ã®ç°ãªããµã空éã«åå²ããç¹åŸŽéã®å åšçãªé¢é£é¢ä¿ãçºæãããçŸåšã®æ¢åã®æ¹æ³ã«æ¯ã¹ãŠããããã¯ãŒã¯ã¯ããå®å šã§æ£ç¢ºãªStructure-Performanceãããã³ã°é¢ä¿ãæ§ç¯ããããšã«æåããŸããã
2.çŸåšã®ã¢ã«ãŽãªãºã ãè€éãªå Žé¢ã§ææåŸ®çްæ§é ç»åã«å¯Ÿããçè§£ãäžè¶³ããäºæž¬ç²ŸåºŠã«åœ±é¿ãäžããåé¡ã«å¯ŸããŠãé«å¹çå€ã¢ãŒãç¹åŸŽèåãããã¯ãŒã¯ãææ¡ããããã®ã¢ãã«ã«ã¯ããšãã«ã®ãŒã¹ãã¯ãã«ç¹åŸŽæœåºã¢ãžã¥ãŒã«ã屿èŠçŽ ç¹åŸŽæœåºã¢ãžã¥ãŒã«ãããã³ææã®ãã¯ãæ§é ç¹åŸŽãæœåºããGLFSâNetã¢ãžã¥ãŒã«ãå«ãŸããã倿 å ±èåãéããŠãææèŠçŽ æ¯æŽåŒ·åãããã¯ãŒã¯ã®è©³çŽ°ãšææç»åã®ãã¯ãæ§é ã®æŠç¥ãæ¡çšããæçµçã«ã¯ãããã¯ãŒã¯ãè€éãªã·ãŒã³ã§æææ§èœã®æ£ç¢ºãªäºæž¬ãå®çŸã§ããããã«ããã
3.ãæææ§èœäºæž¬æ¹æ³ãã®ç¹èš±ãåºé¡ããããã®ç¹èš±ã¯è»œéçŽãããã¯ãŒã¯ã¢ãŒããã¯ãã£ã«åºã¥ããŠãããææã®ç»åãšããã¹ããçµåããå€ã¢ãŒãæ å ±ãç·åçã«å©çšããããšã«ãããææåŸ®çŽ°æ§é ã®åæåã³æ§èœäºæž¬ã®æ£ç¢ºæ§ãããã«åäžãããã
忥åŸãéæå¡ããã¯äžè»æ ªæŽ²é»åæ©é¢è»æéäŒç€Ÿæ ªæ©ç ç©¶é¢ã§èªåé転ã«é¢ããç ç©¶ã«åŸäºãããäžæµ·å€§åŠã®3幎éã®å€§åŠé¢çã®éã§ãäžçæžåœå匷ãããšåæã«ãå€ãã®è¯åž«çåãšç¥ãåããäžæµ·ã®å€ãã®é ãæ©ããŠãå¿ããããªãããããããçãããšåäŒããæ©äŒãããããšãé¡ã£ãŠããŸãã
è«æãžã®ãªã³ã¯ïŒåºäºå€ç¹åŸèåçæææ§èœé¢æµç ç©¶
æã ã®ããŒã ã¯ãåœé宿åè¡ç©ãJournal of the European Ceramic SocietyãïŒIFïŒ5.7ãäžå€®ç§åŠé¢1åºïŒã«è«æãThermal Conductivity Prediction of Al 2 O 3-Doped Tetragonal YSZ Coatings Using Deep Learningããçºè¡šãããåè«æã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠã»ç§åŠåŠé¢ã第1åäœãé³åå·ã第1èè ãéæå¡ã第2èè ãå®éªæ¢ ã第3èè ãéè¶èãšæœæ¯ ãå ±åéä¿¡èè ã§ããã
æ·±ãåŠç¿ã«åºã¥ããŠææç»åã®æ§èœãäºæž¬ããããšã¯ãããŒã¿ã®åžèåãšææç»åãåæã«æœåºã§ããªã屿çãªç¹åŸŽãšå€§åçãªç¹åŸŽåã³çºèŠçãªç¹åŸŽãšã®é¢é£æ§ãªã©ã®åé¡ã«çŽé¢ããŠãããææåéã§ã¯ã補é ã³ã¹ãã忥ä¿è·ãªã©ã®èŠå ã«ããèªç¶ã·ãŒã³ç»åãååŸããããã«ããŒã¿ãäžæ¬ååŸããããšãã§ãããããŒã¿éäžè¶³ã«ããæ·±ãåŠç¿ã¢ãã«ãææåéã«çŽæ¥é©çšããããšãå°é£ã«ãªã£ãŠãããäžæ¹ãèªç¶ãªã·ãŒã³ç»åãšç°ãªããææç»åã¯èªèº«ã®ç¹æ§ã®ãããéåžžã«çްããè€éãªãã¯ã¹ãã£æ§é ãæã€ããšãå€ãããŸãããã¯ãæ§èœã¯å±æçãªãã¯ãæ§é ã®åœ±é¿ãåããã ãã§ãªããç¹åŸŽãšç¹åŸŽã®éã®é¢é£ãæ§é éã®çžäºäœçšãããªãã¡ã°ããŒãã«ãªç¹åŸŽãšåæ§ã«éåžžã«éèŠã§ãããæ¢åã®ã»ãšãã©ã®æ·±ãåŠç¿æ¹æ³ã¯ãèªç¶ã·ãŒã³ç»åã«åªãã衚çŸãæã€CNNã¢ãã«ãçŽæ¥ææåéã«å¿çšããçç¢ºãªæé©åãããŠããªãããCNNã¯åºå®çãªç³ã¿èŸŒã¿æ žãµã€ãºã®ãããæåéãå¶éãããç»åã®å±æçãªç¹åŸŽããæœåºã§ããã倧åçãªç¹åŸŽãç¡èŠããããšãå€ãããã®ãããã¢ã«ãŽãªãºã ã¯ããŒã¿éãäžè¶³ããŠãããããèšç·Žãäžè¶³ããŠããããã屿çãªç¹åŸŽãšå€§åçãªç¹åŸŽãåæã«æœåºããããšãã§ãããäºæž¬ç²ŸåºŠãäžè¶³ããããã¹ãæ§ãæªããšããåé¡ãåŒãèµ·ãããŠããããããã®åé¡ã解決ããããã«ãæ¬æã¯äºéæ§é ç¹åŸŽæœåºãšãã«ãã¹ã±ãŒã«æ³šæåèåãããã¯ãŒã¯ïŒRCFNetïŒãææ¡ããããã®ã¢ãã«ã¯ã°ããŒãã«ç¹åŸŽæœåºã¢ãžã¥ãŒã«ãšããŒã«ã«ç¹åŸŽæœåºã¢ãžã¥ãŒã«ã®äºå岿§é ãæ¡çšããææç»åã®ã°ããŒãã«ç¹åŸŽãšããŒã«ã«ç¹åŸŽãç¬ç«ã«æœåºããããããã®ç¹åŸŽã®ãªãªãžãã«ã¢ããªã³ã°ãç Žå£ããªããææ¡ãããã«ãã¹ã±ãŒã«æ³šæåèåã¢ãžã¥ãŒã«ïŒMergeïŒã«ãããåã¹ã±ãŒã«ã§æœåºãããã°ããŒãã«ç¹åŸŽãšå±æç¹åŸŽãèåããèåã¢ãžã¥ãŒã«ã¯åã®èåçµæã®æ å ±ãèç©ãããæçµçãªèåç¹åŸŽã¯FCNNã«éãããŠåŠçãããäºæž¬çµæãåŸããããäžå³ã¯ãã«ãã¹ã±ãŒã«éäžåèåã¢ãžã¥ãŒã«ã®æ§é æŠç¥å³ã§ããã
åã¹ã±ãŒã«ã«ããã倧åçç¹åŸŽãšå±æçç¹åŸŽã«ã€ããŠã¯ããŸãSCSE泚æã¡ã«ããºã ãæ¡çšãããã£ãã«ãšç©ºéã®2次å ã«ãããéèŠãªæ å ±ãåæã«å±èµ·ããŠãæãéèŠãªç¹åŸŽãéç«ãããé¡èãªéã¿ãå²ãåœãŠããæ¬¡ã«ãã°ããŒãã«æå³ãæã€ã°ããŒãã«ç¹åŸŽã¯ãã£ãã«æ³šæã¡ã«ããºã ã«ãã£ãŠããã«åŠçãããããŒã«ã«æå³æ å ±ãæã€ããŒã«ã«ç¹åŸŽã¯ç©ºé泚æã¡ã«ããºã ã«ãã£ãŠããã«åŠçãããããã®åŸã髿¬¡å 空éãããã³ã°ãšéç·åœ¢å€æãè¡ããçŸåšã®æ®µéã®èåçµæãåŸããææ¡ããæ¹æ³ã¯ææç»åã®å±æãšå€§åç¹åŸŽæœåºãäž¡ç«ãããã®äžã§Mergeã¢ãžã¥ãŒã«ã¯ç¹åŸŽã«å¯ŸããŠå€æ®µèåãè¡ãã倿³šæåã¯æç¶çã«éèŠãªç¹åŸŽã«çŠç¹ãåœãŠããã€ãºæ å ±ãæå¶ããæ å ±æå€±ãæžå°ãããããŠã¢ãã«ã®å€§éã®èšç·ŽããŒã¿ãžã®äŸåãäœæžããããµã³ãã«ãåžå°ãªææç»åã®åéã§ããéåžžã«é¡èãªäºæž¬çµæãåŸãããã
è«æãžã®ãªã³ã¯ïŒThermal Conductivity Prediction of Al2O3-Doped Tetragonal YSZ Coatings Using Deep Learning
ç§ãã¡ã®ã³ãŒããšè«æã¯ã以äžã®å Žæã§å ¬éãããŠããŸãïŒhttps://github.com/han-yuexing/RCFNet_Conv_Resnet50_MHSA/tree/main

æ°åïŒæç¿ç¥º
åäœïŒäžæµ·å€§åŠ
è«æããŒãïŒéå®å šå¯žæ³ã«åºã¥ãè€éãªãã¯ã¹ãã£ç»åå岿¹æ³ã®ç ç©¶
æå°è ã®ååïŒéè¶è
æã ã®ããŒã ã¯ãåœéææéºäŒåå·¥åŠåéã®æ°åãMaterials Genome Engineering Advancesãã«ãPrediction of ultimate tensile strength of Al-Si alloys based on multimodal fusion learningããšããè«æããªã³ã©ã€ã³ã§çºè¡šãããåè«æã¯äžæµ·å€§åŠææç§åŠã»å·¥åŠé¢ã第1åäœãã³ã³ãã¥ãŒã¿å·¥åŠã»ç§åŠåŠé¢ã第2åäœãæ±éŸé£ã第1èè ãé³åå·ã第3èè ãéè¶è婿æãšææç§åŠã»å·¥åŠé¢æè¬ææãå ±åéä¿¡èè ã§ããã
çŸåšãAl-Siåéã®åŒåŒµåŒ·åºŠã¯äž»ã«åŒåŒµè©Šéšã«ãã£ãŠåŸããããµã³ãã«ã®è£œé ãå å·¥ã詊éšã«é¢é£ããå°éçãªæèœãšè©Šéšèšåãå¿ èŠã§ã詊éšåšæãé·ããã³ã¹ããé«ããææã®æµªè²»ã®åé¡ãããããŸããè€éãªåœ¢ç¶ã®éšæã«å¯ŸããŠãæšæºåãããåŒåŒµè©Šæã補é ããŠæ§èœè©Šéšãè¡ãããšã¯èª²é¡ã§ããã
ãã®ãããææã®åŒåŒµåŒ·åºŠãããã«å¹ççãã€æ£ç¢ºã«ååŸãããã¯çŸåšã®èª²é¡ã§ããã ãã®åé¡ã«å¯ŸããŠãAlâSiåéã®åŒåŒµåŒ·åºŠãäºæž¬ããããã«ãæåãšãã¯ãçµç¹ãç·åçã«èæ ®ããå€ã¢ãŒãèååŠç¿ãã¬ãŒã ã¯ãŒã¯ã驿°çã«ææ¡ãããæ¬äœæ¥ã¯åºãå¿çšãããŠãããµãå ±æ¶Al-Siåéã«çŠç¹ãåœãŠããŸããæç®ãšå®éšããŒã¿ããåéæåãæ·»å åéå çŽ ãα-Alç»åãå ±æ¶Siç»åãåŒåŒµãµã³ãã«ãµã€ãºãåŒåŒµé床ãå«ãç°ãªãã¢ãŒãã®ããŒã¿ãåéãããæ¬¡ã«ãç»ååŠçæè¡ãçšããŠåŸ®çްæ§é ç¹åŸŽãã©ã¡ãŒã¿ãæœåºããç»åãåå²ãå®éåæãããæ¬¡ã«ãç°ãªãã¢ããªãã£ããã®33åã®ç¹åŸŽã3段éã®ç¹åŸŽéžå¥ãè¡ãã12åã®éèŠãªç¹åŸŽãåŸããæåŸã«ã12åã®éèŠãªç¹åŸŽãå ¥åãšããŠã4çš®é¡ã®æ©æ¢°åŠç¿ã¢ãã«ïŒæ±ºå®æšïŒDTïŒãã©ã³ãã æ£®æïŒRFïŒãé©å¿åŒ·åïŒAdaBoostïŒãšæ¥µç«¯åŸé åäžïŒXGBoostïŒãçšããŠåŒåŒµåŒ·åºŠååž°äºæž¬ã¢ãã«ãæ§ç¯ããããã®çµæãXGBoostã¢ãã«ã¯ãã¹ãŠã®ã¢ãã«ã®äžã§æããã衚çŸãããããŒã¿ãéãããäž»ã«ç°ãªãæç®ããæ¥ãå Žåãé«ãåŒåŒµåŒ·åºŠäºæž¬ç²ŸåºŠãåŸãããïŒR 2=0.94ãçžå¯Ÿèª€å·®ã¯8.1%æªæºã絶察誀差ã¯14.2 MPaæªæºïŒããŸããUTSã«é¡èãªåœ±é¿ãäžãã5ã€ã®æ··åç¹åŸŽïŒGrain sizeãTiãSiãECDãNumber densityïŒåã³ãã®èšçå€ãç¹åŸŽéèŠæ§è§£æåã³SHAPè§£æã«ããæ±ºå®ãããæ¬äœæ¥ã¯äºå ±æ¶Al-Siåéæåãçµç¹ãšæ§èœã®éã®ãããã³ã°é¢ä¿ã®æ§ç¯ã«ãã³ããæäŸããããšãæåŸ ãããä»ã®åéã«å¿çšããããšãã§ããã
è«æãžã®ãªã³ã¯ïŒPrediction of ultimate tensile strength of Al-Si alloys based on multimodal fusion learning