æã ã®ç ç©¶ããŒã ã¯ãåœéåŠè¡èªãComputational Materials Scienceãã«è«æãData augmentation in material images using the improved HP-VAE-GANããçºè¡šãããçé åäœã¯äžæµ·å€§åŠã³ã³ãã¥ãŒã¿ãŒå·¥çšç§åŠåŠé¢ãçé èè ã¯Yuexing Hanã第2èè ã¯Yuhong Liuãéä¿¡èè rã¯Qiaochuan Chenã§ããã
ã³ã³ãã¥ãŒã¿ããžã§ã³ã®æ¥éãªçºå±ã¯ãå€§èŠæš¡ãªã©ãã«ä»ãããŒã¿ãšé«æ§èœãªèšç®æ©ã«å€§ããäŸåããŠãããããå°ããªãµã³ãã«ããŒã¿ã»ããã§ã®ç»åèªèã¯ãã¢ãã«åŠç¿ã®å®æœãå°é£ã§ãããªã©ãããã€ãã®èª²é¡ã«çŽé¢ããŠãããææç ç©¶ã®åéã§ã¯ãç»åããŒã¿ã®åéã³ã¹ããæ¯èŒçé«ããææç ç©¶ã«ãããç»åãµã³ãã«äžè¶³ã®åé¡ã解決ããããã«ãããŒã¿å¢åŒ·ãå®çŸããææç»åãçæããæ¹è¯åHP-VAE-GANãææ¡ãããŠããã
HP-VAE-GANã¯ãPatch-VAEãšPatch-GANããæ§æãããåäžãµã³ãã«çæã¢ãã«ã§ãããæ¹è¯åHP-VAE-GANã¯ã泚ç®ã¡ã«ããºã ãã¢ãã«ã«å°å ¥ãããPatch-VAEã®ãšã³ã³ãŒããŒã«CBAM(Convolutional Block Attention Module)ã远å ããããšã§ããããã¯ãŒã¯ã®ç¹åŸŽæœåºãšè¡šçŸèœåãããã«åäžããŠããã
ãã®ã¢ãã«ãçšããŠ1æã®ç»åãåŠç¿ãããã®åŸäžå®æ°ã®ãµã³ãã«ãçæããŠåŠç¿ã»ããã®æ¡åŒµãå®çŸãããè¶ é«ççŽ éŒåŸ®çްæ§é ç»åã®åé¡ã§ã¯ãå®ç»åïŒçæç»åã§åŠç¿ããåé¡ã¢ãã«ïŒMobileNetãResNet50ãVGG16ïŒã®ç²ŸåºŠãæããã«åäžããããšãå®éšã§ç€ºãããããŸããææç»åã«é¡äŒŒãããã¯ã¹ãã£ç»åã«å¯Ÿããå®éšã«ãããæ¹è¯åHP-VAE-GANã®æå¹æ§ãæ€èšŒããã
è«æãžã®ãªã³ã¯ïŒ Data augmentation in material images using the improved HP-VAE-GAN
ã³ãŒãã£ã³ã°: https://github.com/han-yuexing/Improved-HP-VAE-GAN
ç§ãã¡ã®ããŒã ã¯ãåœéãžã£ãŒãã«ãExpert Systems With ApplicationsãïŒIF: 8.5ãã³ã³ãã¥ãŒã¿ãµã€ãšã³ã¹1åºTOPïŒã«ãŠãA pseudo-labeling based weakly supervised segmentation method for few-shot texture imagesããšããè«æãçºè¡šããŸããããã®è«æã§ã¯ãäžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠç§åŠåŠé¢ãç¬¬äžæ©é¢ã§ãããHan Yuexingã第äžèè ãLi Ruiqiã第äºèè ãHan YuexingãšChen Qiaochuanãå ±åéä¿¡èè ã§ããããšããå ±åããããŸãã
æ·±ãåŠç¿ã«åºã¥ãææåŸ®çްæ§é ç»ååå²ã¯ããµã³ãã«ã®åžå°æ§ã泚éã®é£æåºŠãã¢ãã«ã®æ±çšåãªã©ã®åé¡ã«çŽé¢ããŠãããè€éãªãã¯ã¹ãã£ãæã€ææç»åã§ã¯ãç°ãªãç©çžéã®å¢çãæ£ç¢ºã«åºå¥ããããšã¯å°é£ã§ããããšãå€ãããããã®åé¡ã¯ãææåŸ®çްæ§é ç»ååå²ã«ãããæ¢åã®æ·±ãåŠç¿ãããã¯ãŒã¯ã®æ§èœäœäžããããããŠããããããã®åé¡ã解決ããããã«ãæ¬æã¯ã¹ã¯ã©ã€ãããŒã¯ã¢ããã«åºã¥ã匱ç£ç£æ¬äŒŒããŒã¯ã¢ãããã¯ã¹ãã£æå³åå²ïŒPTSïŒãããã¯ãŒã¯ãææ¡ãããå®å šãªå¯žæ³ã«æ¯ã¹ãŠãã¹ã¯ã©ã€ã寞æ³ã¯æç¢ºãªã«ããŽãªãæã€å°æ°ã®ãã¯ã»ã«ã«å¯ŸããŠã®ã¿å¯žæ³ãè¡ãå¿ èŠãããã寞æ³äœæ¥ã«å¿ èŠãªåéã®ç¥èãå€§å¹ ã«åæžããŸããããããã¹ã¯ã©ã€ã衚瀺ã«ãã£ãŠã«ããŒãããç»çŽ æ°ã¯æ¥µããŠå°ãªããè€éãªãã¥ãŒã©ã«ãããã¯ãŒã¯ãååã«ç£èŠåŠç¿ããããšã¯å®¹æã§ã¯ãªãããããã£ãŠãPTSãããã¯ãŒã¯ã¯ããã¬ãŒãã³ã°æ®µéã§åœã©ãã«ãçæããããšã«ãããããå©çšå¯èœãªç£èŠæ å ±ãååŸããã
äžå³ã«ç€ºãããã«ãPTSãããã¯ãŒã¯ã¯äºéå岿§é ãæ¡çšããäž»åå²ãšè£å©åå²ã®2ã€ã®éšåãå«ããäž»åå²ã¯ç»åç¹åŸŽãšåå²äºæž¬ãæœåºããããã«çšããããè£å©åå²ã¯åœã©ãã«ãçæããããã«çšããããäž»åå²ãèšç·Žãè¡ãã®ãå©ããããã«ãã£ãŠäž»åå²ã®åå²äºæž¬çµæã®äºéç£ç£ïŒã¹ã³ã¢ãªã³ã°ãšåœã©ãã«ïŒãå®çŸãããè©Šéšæ®µéã§ã¯ãäž»åå²ã®ã¿ãç»åã®åå²çµæãäºæž¬ããããã«äœ¿çšããããPTSãããã¯ãŒã¯ã¯ã1ã2æã®ã¹ã¯ã©ã€ãã©ã€ã³ã«åºã¥ãè€éãªãã¯ã¹ãã£ææç»åãå®çŸããæ±åèœåãæã€ç»ååå²ã¢ãã«ãèšç·Žããã¢ãã«ã¯æ®éçã§ãããæ¬¡ã®å³ã¯ããã¿ã³åéããŒã¿ã»ããäžã®ã¹ã¯ã©ã€ã衚瀺ã«åºã¥ãç°ãªãã¢ãã«ã®åå²çµæã§ãã
PTSãããã¯ãŒã¯ã®ç¹åŸŽãšUnet++ãããã¯ãŒã¯ã®ç¹åŸŽãããããt-SNEæ¹æ³ãçšããŠãã£ã¡ã³ã·ã§ã³ããŠã³ããåŸãå³3ã«ç€ºããããªç¹åŸŽååžãåŸãããšãã§ãããPTSãããã¯ãŒã¯ãšUnet++ãããã¯ãŒã¯ã®ç¹åŸŽååžãæ¯èŒããããšã«ãããUnet++ãããã¯ãŒã¯ã®ç°ãªãã«ããŽãªã®ç¹åŸŽã¯PTSãããã¯ãŒã¯ã«æ¯ã¹ãŠæ··åãããŠããããšãåãã£ããäžå³ã®Unet++ãããã¯ãŒã¯ã®éãšãªã¬ã³ãžã®ç¹åŸŽç¹ã®ååžã¯äºãã«éãªãåããUnet++ãããã¯ãŒã¯ã®æçµçãªåå²çµæãå¶éããå¯èœæ§ããããå¯Ÿç §çã«ãPTSãããã¯ãŒã¯ã®ç¹åŸŽååžã®ç°ãªãã«ããŽãªéã®å¢çã¯ããæç¢ºã§ãããäºæž¬åå²ãããè¯ãè¡ãã®ã«åœ¹ç«ã€ã
ç§ãã¡ã®ã³ãŒããšè«æã¯ã以äžã®å Žæã§å ¬éãããŠããŸãïŒhttps://github.com/han-yuexing/Scribble_Segmentation
ç§ãã¡ã®ããŒã ã¯ãåœéãžã£ãŒãã«ãComputational Materials ScienceãïŒIF: 3.3000ïŒã«ãŠãææç§åŠã®åºçç©ã«ãããããã¹ããšè¡šããŒã¿ã®çµ±åã«åºã¥ãæç®ãã€ãã³ã°ææ³ããšé¡ããè«æããªã³ã©ã€ã³ã§çºè¡šããŸããããã®è«æã§ã¯ãäžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ãç¬¬äžæ©é¢ãšãªãã第äžèè ã¯åŒµç坿æã第äºèè ã¯åŒµå®¶æºæ°ã§ãããéä¿¡èè ã¯éè¶å Žå¯ææã§ãã
ç§åŠæç®ã¯ç ç©¶ææã瀺ãéèŠãªææ®µã§ãããæ¬ç ç©¶ã§ã¯å€§èŠæš¡ãªææç§åŠæç®æ å ±åŠçææ³ãææ¡ããæç®ããããã¹ããšè¡šããŒã¿ãããããæœåºãåæããŸããããŸããæ±çšçãªåçã¯ãŒããã¯ãã«ãšãã¡ã€ã³åºæã®éçã¯ãŒããã¯ãã«ãçµã¿åãããææããã¹ãã®åºæè¡šçŸèªèã¢ãã«ãææ¡ããŸãããæ¬¡ã«ãå¹ççãã€æ£ç¢ºãªç»åå衚ããŒã¿ã®èªèãšæåæœåºææ³ãææ¡ããæå衚ããææåãåäœãããã³æåãæœåºããŸãããæåŸã«ãããã¹ããšè¡šããŒã¿ããæœåºããæåãããã»ã¹ãæ§èœãããã³æ§èœå€åã䜿çšããŠãæ©æ¢°åŠç¿ãçšããŠè飿§ãå»¶æ§ã匷床ãããã³ç¡¬åºŠãäºæž¬ããŸãããæ¬ç ç©¶ã§ã¯ã¹ãã³ã¬ã¹éŒããã¢çŽ æãšãã11058ä»¶ã®ã¹ãã³ã¬ã¹éŒæææç®ãã236äžã®ãšã³ãã£ãã£ãš7970ã®æåãæœåºãã4ã€ã®æ§èœå€åãäºæž¬ããŸãããææ¡ãããææ³ã¯ãææç§åŠæç®ããã®ç¥èã®å€§èŠæš¡ãªæœåºãå®çŸããé¢é£ããç ç©¶è ã«å©çšå¯èœãªæœåºçµæãæäŸããæææ§èœæ¹åã®ä¿é²ã«åœ¹ç«ã¡ãŸãã
è«æãžã®ãªã³ã¯ïŒA literature-mining method of integrating text and table extraction for materials science publications

é»å¿æ¡ããã¯ãéŠéœåž«ç¯å€§åŠã§ã³ã³ãã¥ãŒã¿ç§åŠãšæè¡ã®å°æ»ãåŠã³ãçŸåšã¯äžæµ·å€§åŠã§ã³ã³ãã¥ãŒã¿ç§åŠãšæè¡ ã®ä¿®å£«èª²çšã«åšç±ããŠããŸããåœŒå¥³ã¯æããæ¥œèгçãªæ§æ Œã§ãææ ã®å®å®ããŠããã人ã ãšã®é¢ãããè¯ãã§ããæ ç» ãã¢ãã¡ãèŠããã鳿¥œãèŽãããããããšã奜ãã§ãæ°ãããã®ãåãå ¥ããããšã«åã³ãæããŠããŸãã圌女ã¯ç© 極çã§åäžå¿ããããèšç»çã«ç©äºã«åãçµãåŸåããããŸããäžæµ·å€§åŠã§æ°ããªæ ãå§ãããã£ãããšåŠã³ãäœãé ããåé²ãç¶ããããšãæåŸ ããŠããŸãïŒ
èåæµ©ããã¯ç·æ§ã§ãäžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿åŠé¢ã³ã³ãã¥ãŒã¿ç§åŠãšæè¡ç³»ã§åŠå£«å·ãååŸããçŸåšã¯äžæµ·å€§åŠ ã®ã³ã³ãã¥ãŒã¿åŠé¢ã§ç ç©¶çãšããŠåŠãã§ããŸãã圌ã¯å åçãªæ§æ Œã§ãããªããã人ã«å¯ŸããŠå奜çã§ãããç©äºã« 察ããŠå¥œå¥å¿ãæã¡ãçæŽ»ãæããŠããŸãã圌ã®è¶£å³ã¯å¹ åºãã鳿¥œãèŽãããšãåçãæ®ãããšããããŠæ°Žæ³³ã奜ã ã§ãã圌ã¯ç ç©¶çæŽ»ã§å°éèœåãåäžãããç¥èãåŸãŠæé·ãç¶ããããšãæãã§ããŸãã


æåéããã¯ç·æ§ã§ãå±±æ±å»ºç¯å€§åŠã§ãœãããŠã§ã¢ãšã³ãžãã¢ãªã³ã°ïŒãœãããŠã§ã¢éçºæ¹åïŒãå°æ»ããŠåŠå£«å· ãååŸããŸãããçŸåšã¯äžæµ·å€§åŠã§ã³ã³ãã¥ãŒã¿ç§åŠãšæè¡ã®ä¿®å£«èª²çšã«åšç±ããŠããŸããåœŒã¯æãããæèãæŽ»çºã§ 楜芳çãªæ§æ Œãæã£ãŠãããæ¥åžžçã«ã¯é³æ¥œãèŽãããæ ç»ã芳ããããããšã奜ãã§ãã圌ã¯ç ç©¶çæéã®åŠç¿ãšå® è·µãéããŠãèªèº«ã®èŠéãããã«åºããåªããå人ãšåºäŒããåŠè¡èœåãåäžãããããšãæãã§ããŸãã
åŸå€©æŽããã¯ç·æ§ã§ãåžžå·å€§åŠã§åŠå£«å·ãååŸããçŸåšã¯äžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿ç§åŠãšæè¡ã®ä¿®å£«èª²çšã«åšç±ã ãŠããŸããåœŒã¯æ¥œèгçã§åæ¢ã§ãçæŽ»ãæããINFJã¿ã€ãã®äººã§ãã鳿¥œãæ ç»ããã£ãããã¹ã圌ã®è¶£å³ã§ãããã® ã¿ãŒãå°ã匟ãããšãã§ããŸãã圌ã¯ä»äºã«éäžããçå£ã«åãçµã¿ãææå¥æ³å€©å€ãªã¢ã€ãã¢ãæãã€ãããšããã ãŸããç ç©¶ã®éã¯ææŠã«æºã¡ãŠãããåŠã¶éã®ããæçŸ©æ·±ããªãã®ã§ãã


æç¿æ°ããã¯ãäžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ã§åŠå£«å·ãååŸããçŸåšã¯äžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿å·¥åŠãš ç§åŠåŠé¢ã®é»åæ å ±å°æ»ã®ä¿®å£«èª²çšã«åšç±ããŠããŸãã圌ã¯äººæã£ããæããæ§æ Œã§ã責任æããããŸããã²ãŒã ãã ããã鳿¥œãèŽããããèªè»¢è»ã«ä¹ã£ãããªã©ãçŸå®ããé¢ããæŽ»åãæ¥œããããšã奜ãã§ããããããã³ã³ãã¥ãŒã¿ ã®åŠè¡çãªåé¡ãå®è·µçãªåé¡ã«åŒ·ãèå³ãæã£ãŠããã修士課çšã§åŠè¡æ°Žæºãšå°éèœåãé«ããååãå 茩ãšå ±ã«æ é·ããããšãæãã§ããŸãã
ç§ãã¡ã®ããŒã ã¯ãåœéåŠè¡èªãJournal of Materials Research and TechnologyãïŒIFïŒ6.4ãäžç§é¢1åºãããïŒã«ãŠããMicrostructural evolution and coarsening behavior of the precipitates in 2205 duplex stainless steel aged at 850âããšããè«æããªã³ã©ã€ã³ã§çºè¡šããŸããããã®è«æã§ã¯ãäžæµ·å€§åŠã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ãç¬¬äžæå±æ©é¢ã§ãããéè¶å Žããã第äžèè ãæ± 掳婷ããã第äºèè ãšãªã£ãŠããŸãããŸããææã²ãã å·¥åŠç ç©¶é¢ã®å埮å çã¯å€ãã®ãµããŒããšå©ããæäŸããŠãã ãããŸãããå ±åéä¿¡èè ãšããŠãéè¶å Žåææãšææç§åŠãšå·¥çšåŠé¢ã®äœçéææãåãé£ããŠããŸãã
2205äºçžäžéé¢ïŒDSSïŒã«ãããŠã第äºçžã®åœ¢æã¯ãã®æ©æ¢°çæ§èœã«å€§ããªåœ±é¿ãäžããŸãã2205 DSSäžã®æåºçžã®åŸ®èŠçãªæ§é ã®é²åãšç²åæåã®ç ç©¶ã¯ãç§åŠçããã³æè¡çãªæå³ãæã¡ãŸããçŸåšã®ç ç©¶ã§ã¯ãSEM/EDSïŒèµ°æ»é»åé¡åŸ®é¡/ãšãã«ã®ãŒåæ£Xç·åæè£ 眮ïŒããã³TEMïŒééé»åé¡åŸ®é¡ïŒãçšããŠã850âã§200æéã«ãããç²åãé²è¡ãã2205 DSSäžã®æåºç©ã®æåãšåœ¢æ ã®å€åã系統çã«ç ç©¶ããŸãããããã«ã深局åŠç¿ãšããžã¿ã«ç»ååŠçæè¡ãå©çšããSEMç»åã«åºã¥ããŠéå±éååç©ã®æåºç©ãç¹ã«Ïçžã®ãµã€ãºçµ±èšãè¡ããŸãããããã«åºã¥ããŠããªã¹ãã¯ã«ãç²åæ©æ§ã«åºã¥ããŠÏçžãšÎ³çžã®å¹³åçãªçžéãšãã«ã®ãŒãåççã«æšå®ããŸããããã®ç ç©¶ã¯ã2205 DSSäžã®æåºç©ã®åŸ®èŠçæ§é ã®é²åãšç²åæåã«ã€ããŠå æ¬çãªçè§£ãæäŸããŸãã
è«æãžã®ãªã³ã¯ïŒMaterial structure segmentation method based on graph attention
ç§ãã¡ã®ã³ãŒããšè«æã¯ã以äžã®å Žæã§å ¬éãããŠããŸãïŒhttps://github.com/han-yuexing/Roughening-Behavior
äžæµ·å€§åŠã忥ãã2020幎ã®ä¿®å£«èª²çšçãçè¿æž¯ãããåå®è¹ãããå€éŠæ¡Šãããæç¿ç¥ºããã¯ãæ¯æ ¡ã蚪ãããã€ãŠã®ãã£ã³ãã¹çæŽ»ãæ¯ãè¿ãããã€ãŠã®æå°æå¡ã§ããé©è¶å Žå çãšå€ãã®äº€æµãããŸããããã®åž°æ ¡ã®æ ã§ã¯ã圌ãã¯ä»äºãçæŽ»ã§ã®çµéšãææ³ãå ±æããæ¯æ ¡ãžã®æ·±ãææ ãšææ ã衚çŸããŸããã忥ããŠéããªã圌ããåŠæ ¡ã«æ»ã£ãŠããããšã«ãããæ°ã ã®ææ šã«èžãæãããŸããããã®ãã£ã³ãã¹ã¯åœŒãã®æé·ãšå€åãèŠå®ã£ãŠããå Žæã§ãããããã§ã®ãã¹ãŠã圌ãã«æè¬ãšå€§åããäžããŠãããŸãã
ãã€ãŠã®æå°æå¡ã§ããé©å çãšã®äº€æµã®äžã§ã4人ã®ä¿®å£«èª²çšçã¯ä»äºãçæŽ»ã®çµéšãææ³ãå ±æããŸããã圌ãã¯ä¿®å£«èª²çšæä»£ã®åŠã³ãšç掻ã圌ããããèªä¿¡ãæã¡ãç¬ç«ããååšã«ããè·æ¥ç掻ã®å åºãªåºç€ãç¯ãããšæããŠããŸããåæã«ã圌ãã¯æå°æå¡ã«å¯Ÿããæè¬ã𿬿ã衚ããæå°ãšå©ãã圌ãã®æé·ãšçºå±ã«éèŠãªåœ¹å²ãæããããšèªèããŠããŸãã
ãã®åž°æ ¡ã®æ ã¯ã4人ã®ä¿®å£«èª²çšçã«æ¯æ ¡ã®é åãšäœ¿åœãåã³æããããæ¯æ ¡ã®çºå±ãšé²æ©ã«å¯Ÿãã圌ãã®å°éãšé¢å¿ãé«ããŸããã圌ãã¯ãã©ãã«ããŠãåžžã«æ¯æ ¡ã®çºå±ãšé²æ©ã泚èŠããæ¯æŽããææãæã£ãŠãããåŠæ ¡ãšç€ŸäŒãžã®è²¢ç®ãæããããšã衚æããŠããŸãã
é»åæãããå§ç¥è¿ãããåŽæ³œéãããè家浩ããã莺绎çªãããåŽææ°ãããåŸçè¯ãããçè±å°§ããã®åæ¥ãå¿ãããç¥ãç³ãäžããŸãïŒçããã¯äžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿ç§åŠãšæè¡å°æ»ã§åŠå£«å·ãååŸãã忥èšèšãé©å çã®æå°ã®ããšã§å®äºããŸããã
é»åæããã®åæ¥èšèšã¯ãææç»åããŒã¿ããŒã¹ã·ã¹ãã ãã©ãããã©ãŒã ã®ç ç©¶ãšéçºã«é¢ãããã®ã§ãããŒã¿ã®ã¢ããããŒããããŒã¿ã®æ€çŽ¢ãã¢ã«ãŽãªãºã ã®å©çšãå¯èœãªã·ã¹ãã ãã©ãããã©ãŒã ãæ§ç¯ããããšãç®æããŠããŸããããã³ããšã³ãã®ããŒãžãžã®ã¢ã¯ã»ã¹ãšæäœãæäŸããããã¯ãšã³ãã·ã¹ãã ã§ã¯ããŒã¿ã®ä¿åãæ€çŽ¢ãã¢ã«ãŽãªãºã ã®åŒã³åºããè¡ããããã«ããŸããæçµçã«ã¯ãåäžãŸãã¯è€æ°ã®ææç»åã®éèŠãªããŒã¿ãæ€çŽ¢ãåŠçãããªã©ã®äœæ¥ãå¯èœã«ãªããŸãã
å§ç¥è¿ããã®åæ¥èšèšã¯ãæææç®ããŒã¿ããŒã¹ã·ã¹ãã ãã©ãããã©ãŒã ã®ç ç©¶ãšéçºã«é¢ãããã®ã§ãåäžãŸãã¯è€æ°ã®æææç®ã®éèŠãªããŒã¿ãæ€çŽ¢ãåŠçãããªã©ã®äœæ¥ãå¯èœãªã·ã¹ãã ãå®çŸããããšãç®æããŠããŸãã
åŽæ³œéããã®åæ¥èšèšã¯ããããªåŠçã«åºã¥ãè¡è·¯ç°å¢ã®è©äŸ¡ã·ã¹ãã ã®ç ç©¶ãšéçºã«é¢ãããã®ã§ãããã®ç ç©¶ã§ã¯ããããªåŠçã«åºã¥ã深局åŠç¿ã¢ã«ãŽãªãºã ãšç»ååŠçã®ç ç©¶ãåºã«ãè¡è·¯ç°å¢ã®è©äŸ¡ã·ã¹ãã ãæ§ç¯ããè©äŸ¡ã¹ã³ã¢ãæäŸããŸãã
è家浩ããã®åæ¥èšèšã¯ãç°ãªããããªã®ããŒãã¬ãŒã å 容ã®èåæ¹æ³ã«é¢ããç ç©¶ã§ãããã®ç ç©¶ã§ã¯ããããªåŠçãåºã«ããããããªããããŒãã¬ãŒã ãåå²ãããã®ããŒãã¬ãŒã ã®æ åãå¥ã®ãããªã«æåœ±ããããšã§ãç°ãªããããªã®ã³ã³ãã³ããèåããããšãç®æããŠããŸãã
莺绎çªããã®åæ¥èšèšã¯ãççŽ ç¹ç¶æš¹èè€åææããŒã¿ããŒã¹ã®æ§ç¯ãšéçºã«é¢ãããã®ã§ãççŽ ç¹ç¶æš¹èè€åææã®ããŸããŸãªããŒã¿ã®è€éãã«å¯Ÿå¿ãããããå¹ççãªç®¡çãå¿ èŠã§ããããŒã¿ã®ãã³ãã¬ãŒããäžããããç¶æ³äžã§ãççŽ ç¹ç¶æš¹èè€åææããŒã¿ããŒã¹ã®æ§ç¯ãšéçºãå®çŸããŸãã
åŽææ°ããã®åæ¥èšèšã¯ãé åéã®åŸ®èŠççµç¹ç»åããçµæ¶ç²ã®åœ¢ç¶ãæœåºãçµ±èšããæ¹æ³ã«é¢ããç ç©¶ã§ãããã®ç ç©¶ã§ã¯ãé»åå·¥æ¥ã§åºã䜿çšãããŠããé åéãäŸã«ãææç»åã®ã»ã°ã¡ã³ããŒã·ã§ã³ãšèªèã«åºã¥ããã¢ã«ãŽãªãºã ãéçºããåéã®åŸ®èŠççµç¹ç»åããå®éçãªç¹åŸŽãæœåºããååŠçããã³é»æ°çæ§èœãšé¢é£ä»ããŸããããã«ãããåéææã®çµç¹ã«åºã¥ããæ§èœäºæž¬ãšèšèšã®åºç€ãç¯ããŸãã
åŸçè¯ããã®åæ¥èšèšã¯ãåŠè¡æç®ã®ç¥èã°ã©ãã®æ§ç¯ã«é¢ããç ç©¶ãšéçºã§ãããã®ç ç©¶ã§ã¯ãèªç¶èšèªåŠçæè¡ã𿩿¢°åŠç¿ã¢ã«ãŽãªãºã ãå¿çšããåŠè¡æç®ããç¥èãèªåçã«æœåºããç¥èã°ã©ããçæããå¯èŠå衚瀺ããããŒã«ãèšèšããŸãã
çè±å°§ããã®åæ¥èšèšã¯ãC++ã«ãããé«äžŠè¡æ§ã¡ã¢ãªããŒã«ã®éçºã«é¢ãããã®ã§ãããã®ãããžã§ã¯ãã¯ãGoogleã®ãªãŒãã³ãœãŒã¹ãããžã§ã¯ãã§ããtcmallocãããŒã¹ã«ããã³ã¢ãã¬ãŒã ã¯ãŒã¯ãç°¡çŽ åããŠãç°¡æçã®é«äžŠè¡æ§ã¡ã¢ãªããŒã«ãå®è£ ããŸããã
çè¿æž¯ããã¯ãè¯å倧åŠã§é»æ°å·¥åŠåã³èªååå°æ»ã®åŠå£«å·ãååŸãã2020幎ç§ã«äžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿åŠé¢ã§ãœãããŠã§ã¢å·¥åŠå°æ»ã®ä¿®å£«å·ãååŸããããã®ç ç©¶ãéå§ããŸãããçè¿æž¯ããã¯ãé³äŸšå·å çãéè¶å Žå çããããŠåŒµçå çã®æå°ã®ããšãç§åŠæç®äžã®æ²ç·æ å ±åŠçæ¹æ³ã«é¢ããç ç©¶ã«åãçµã¿ãŸãããå çæ¹ã®ãæå°ã®ããšã以äžã®ç ç©¶ã宿ãããŸããïŒ
-
ãŸããæ¬ç ç©¶ã§ã¯ãçŸåšã®ç§åŠæç®ã§åºãååšããæ²ç·åº§æšã°ã©ãã®ããŒã¿æœåºã®é£ãããšæéã®ãããäœæ¥ã«åãçµã¿ãŸããæ²ç·ç»åã¯å€æ§ãªæç»æ¹æ³ãé«ãå¯åºŠã匷ãé£ç¶æ§ãæã£ãŠãããããç°ãªãææ³ã«ããæ²ç·æ å ±ã®æœåºãäžæ£ç¢ºã«ãªãããšããããŸããæ¬ç ç©¶ã§ã¯ãæ²ç·æ€åºææ³ã«ãã£ãŠçããæ²ç·ã®ä¹±ãããŒãããªã©ã®åé¡ã解決ããæ²ç·æ å ±ã®æœåºç²ŸåºŠãåäžãããããã«ãå¯ãªãããã¯ãŒã¯ã¢ãã«ãåºã«ãããšã³ãããŒãšã³ãã®æ²ç·æœåºã¢ãã«ãææ¡ããŸããå容éãåºããããã«èªå·±é©å¿çãªç©ºæŽç³ã¿èŸŒã¿ã¢ãžã¥ãŒã«ã远å ãã鿬¡çãªçްååãã¹ã¢ãžã¥ãŒã«ãå°å ¥ããåå±€ã®äžéåºåãåŸç¶ã®çްååã¢ãžã¥ãŒã«ã«å°å ¥ããæå€±é¢æ°ã®ãã©ã¡ãŒã¿ãé©åã«èšå®ããããšã§ããããã¯ãŒã¯ã®æ§èœãæé©åããŸããããã«ãæ²ç·æ€åºã®ããã®ããŒã¿ã»ãããç¬èªã«æ§ç¯ããæ¹è¯ãããã¢ãã«ããã¬ãŒãã³ã°ããããšã§ãæ²ç·ç»åäžã®æ²ç·ãšããžæ å ±ã®æœåºèœåãããã«åäžãããŸãã宿§è©äŸ¡ã®çµæã¯ãæ¬ç ç©¶ææ³ãä»ã®ææ³ãšæ¯ã¹ãŠåªããŠããããšãããã«ç€ºããŠããŸãã
-
次ã«ãåè¿°ã®æ¹æ³ã«ãããŠãéå°ãªå¯ãªç³ã¿èŸŒã¿ã¢ãžã¥ãŒã«ã®ç©ã¿éãã«ãã£ãŠãã£ãã«ç¹åŸŽæ å ±ã倱ãããã¢ãã«ã®èšç·Žå¯èœãªãã©ã¡ãŒã¿ã倧ãããªãããã¬ãŒãã³ã°ãšæšè«ã«æéãããããšããåé¡ã«å¯ŸããŠãæ¬ç ç©¶ã§ã¯ãåæ¹åã®å¹ççãªãã£ãã«æ³šææ©æ§ã«åºã¥ãæ²ç·æœåºãããã¯ãŒã¯æ§é ãææ¡ããŠããŸãããã®æ¹æ³ã§ã¯ãVggãäž»èŠãªç¹åŸŽæœåºãããã¯ãŒã¯ãšããåæ¹åã®å¹ççãªãã£ãã«æ³šææ©æ§ã䜿çšããŠç°ãªããã£ãã«ã®ç¹åŸŽã®éã¿ã衚çŸããç»åå ã®ãã£ãã«éã®é¢ä¿ãããè¯ãåŠç¿ããç¹åŸŽè¡šçŸèœåãåäžãããŸãããããŠãã¹ããŒãžç¹åŸŽçµ±åã¢ãžã¥ãŒã«ãçµã¿èŸŒã¿ãç¹åŸŽã®æå€±ãæžãããç¹åŸŽè¡šçŸèœåãåäžãããŸããç°ãªãã¹ããŒãžã®äœè§£å床ãšé«è§£å床ã®ç¹åŸŽãçµ±åããããšã«ãããã¢ãã«ã¯ç»åã®æå³æ å ±ãããããçè§£ããåçã®ç¶æ³äžã§ã¢ãã«ã®ãã©ã¡ãŒã¿ãå€§å¹ ã«åæžããããšãã§ããŸããæ²ç·ããŒã¿ã»ããã§ã®ãã¬ãŒãã³ã°ãšãã¹ããè¡ã£ãçµæããã®æ¹æ³ã«ãã£ãŠæœåºãããæ²ç·ã®æ§é ã¯ã¯ã£ãããšããéå±€çã«æç¢ºã«ãªããæ£ç¢ºãªäœçœ®æ å ±ãæäŸããæ²ç·åšèŸºã®ãŒãããªã©ã®åé¡ãããå°ãªããã©ã¡ãŒã¿ã§è§£æ±ºããæ²ç·ã®æœåºç²ŸåºŠãåäžãããããšã瀺ãããŸããã
-
æåŸã«ãæ²ç·ããŒã¿ã®æœåºã¢ã«ãŽãªãºã ã®è€éããšå®è£ ã®é£ããã¯ããã®å¿çšç¯å²ãå¶éããããšãå€ãã§ãããã®ããã䜿ããããããŒã¿æœåºãœãããŠã§ã¢ã®éçºã«ãããæ²ç·ããŒã¿ã®æœåºãæ®åããããç°¡åã«äœ¿çšã§ããããã«ãªããå®è·µçãªå¿çšãä¿é²ããããšãã§ããŸããæ¬ç ç©¶ã§ã¯ãæ²ç·ããŒã¿æœåºã®å®çšçãªäŸ¡å€ã«çŠç¹ãåœãŠããã¹ã¯ãããåãã®ããŒã¿æœåºãœãããŠã§ã¢ãéçºããã¢ã«ãŽãªãºã ã®å®è£ ãæšé²ããŸããããã«ãããããå€ãã®äººã ãæ²ç·ããŒã¿æœåºã®å®çšçãªäŸ¡å€ã享åããããŸããŸãªé åã§ã®åºç¯ãªå¿çšãä¿é²ããããšãã§ããŸãã
çè¿æž¯ããã¯ãäžæµ·å€§åŠã®å€§åŠé¢çã®éã«ãç±å¿ã«åŠç¿ããå°éç¥èãšç ç©¶èœåãé«ããããšã«åªåããåªããæå°è ãå人ãã¡ããå€ãã®æ©æµãåããŸããã圌ã¯åå¿ãå¿ããã䜿åœãå¿ã«å»ã¿ã忢ã«åé²ãã京æ±é¶å®éå£ã®çºå±ã«ç¥æµãšåãè²¢ç®ããã§ããããåœŒãæ¥çã®åªãã人æã®äžäººã«ãªããé²ãã§åªåããããšãä¿¡ããŠããŸãã
è«æãžã®ãªã³ã¯ïŒResearch on curve information processing methods in scientific literature
匵家æºããã¯å京æ å ±å·¥çšå€§åŠã§åŠå£«å·ãååŸãã2020幎ã«äžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ã§å°éè·ã®ä¿®å£«èª²çšã«å ¥åŠããŸããã課é¡ã°ã«ãŒãã«åå åŸãæå°æå¡ã§ãã匵çå çãéè¶å Žå çãé³äŸšå·å çã«åž«äºããæææç®æ å ±ã®æ¢çŽ¢æ¹æ³ã«é¢ããç ç©¶ãè¡ããŸãããå çæ¹ã®ãæå°ã®ããšã以äžã®ç ç©¶ãå®äºããŸããïŒ
-
æææç®ã®ããã¹ã衚çŸç¹æ§ããã³æåè¡šã®æ§é ç¹åŸŽã«å¯Ÿããæèãèæ ®ããæç®æ å ±æœåºææ³ãææ¡ããŸãããããã¹ãæ å ±ãšè¡šæ å ±ãããããæ¢çŽ¢ããããã®ææ³ã§ããææããã¹ãã®æœåºã«ã¯åºæè¡šçŸèªèæè¡ã䜿çšããåçãªåèªãã¯ãã«ãšææé åã®éçãªåèªãã¯ãã«ãçµ±åããããšã§ãååèªãã¯ãã«ã«ã³ã³ããã¹ãæ å ±ãšææé åã®ç¥èãå«ããããšãã§ããŸãããããã«ãããææããã¹ãã®åºæè¡šçŸèªèã®å¹æãèããåäžããã¹ãã³ã¬ã¹éŒææãç¡æ©ææã®åºæè¡šçŸèªèããŒã¿ã»ããã§å®éšãè¡ããŸãããæææç®äžã®æåè¡šã®æ§é ç¹åŸŽã«çç®ãã圢æ åŠãç®æšèŒªéæ€åºãããã¹ãã®é¡äŒŒåºŠãªã©ã®ææ³ãçµã¿åãããåŸæ¥ã®ç»ååŠçæè¡ã«åºã¥ã衚ã®èªèææ³ãææ¡ããŸãããæåè¡šã®æ§é ãèŠåºããããããŒãããã³ããã£ã«åè§£ããç°ãªãé åããææåãå çŽ ãå çŽ å«æéãããã³åäœæ å ±ãæœåºããããšãã§ããŸããå®éšã«ãããæå衚ã®èªèææ³ã¯è¯å¥œãªçµæãéæããããšã確èªãããŸããã
-
æææç®ããæœåºããåŒåŒµåŒ·åºŠãšæææåããŒã¿ã«åºã¥ããŠãææã®æ§èœäºæž¬æ¹æ³ãææ¡ããŸããããã®æ¹æ³ã§ã¯ãXenonPyæææ å ±åŠã©ã€ãã©ãªã䜿çšããŠæåããŒã¿ãç¹åŸŽçã«æ¡åŒµããæ¡åŒµãããèšç®åçã«åºã¥ããŠãã¯ãã¹ç¹åŸŽå§çž®ãšç¹åŸŽéžæã®ææ³ãèšèšããŸãããããã«ãããå çŽ ã¬ãã«ã®çµ±èšçç¹åŸŽãšåŒåŒµåŒ·åºŠããŒã¿ãéžæãããããã®ããŒã¿ã䜿çšããŠæ©æ¢°åŠç¿ã¢ãã«ããã¬ãŒãã³ã°ããŸãããå®éšã«ã¯ãæ¥æ¬ã®åœç«ææç§åŠç ç©¶æãå ¬éããããŒã¿ã䜿çšãããçµæã¯ææ¡ãããæåç¹åŸŽåŠçæ¹æ³ãã¢ãã«ã®äºæž¬æ§èœãå€§å¹ ã«åäžãããããšã瀺ããŠããŸãã
-
ã¹ãã³ã¬ã¹éŒããµã³ãã«ææãšããŠãææ¡ãããæç®æ¢çŽ¢ããã³æ§èœäºæž¬ææ³ã11,058ä»¶ã®ã¹ãã³ã¬ã¹éŒã®ç§åŠæç®ã«é©çšããŸãããæç®ããã¹ãããã¯2,360,000åã®ææãšã³ãã£ãã£ãæœåºããæç®ã®è¡šããã¯7,970çµã®æææåæ å ±ãæœåºããŸããããããããé¢é£ããããŒã¿ãéžæããåŒåŒµåŒ·åºŠã®æ°å€äºæž¬ãè 飿§ãå»¶æ§ã匷床ã硬床ã®å€ååŸåã®äºæž¬ãè¡ããŸããã
匵家æºããã¯åæ¥åŸããœãããŠã§ã¢éçºã«é¢é£ããä»äºã§è¯çºäžæµ·ç ç©¶æã«å ¥ç€ŸããŸãããäžæµ·å€§åŠã§ã®3幎éã®å€§åŠé¢ç掻ã§ã圌ã¯äžçæžåœå匷ããå°éç¥èãšç ç©¶èœåãåäžãããŸããããŸããå€ãã®åªããæå°æå¡ãå人ãšåºäŒãããšãã§ããŸãããå°æ¥ã®éã«ãããŠã匵家æºãããåå¿ãå¿ããã䜿åœã念é ã«çœ®ããå°é£ã«ç«ã¡åãããåé²ããããšãé¡ã£ãŠããŸãã
è«æãžã®ãªã³ã¯ïŒResearch on Context-aware Material Literature Text and Table Information Mining and Application Methodology
åå®è¹ããã¯å®åŸœäžå»è¬å€§åŠã§åŠå£«å·ãååŸãã2020幎9æããäžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿å·¥åŠãšç§åŠåŠé¢ã§ä¿®å£«å·ãååŸããããã®ç ç©¶ãå§ããŸããã圌女ã¯ç ç©¶ã°ã«ãŒãã«åå ããéè¶å Žææã®æå°ã®ããšãææç»ååŠçãææç»å匷åãªã©ã®é¢é£æè¡ãšå¿çšã«ã€ããŠåŠã³ãŸãããéææã®äžå¯§ãªæå°ã®ããšã以äžã®ç ç©¶ã宿ããŸããã
-
ç±éå£ã³ãŒãã£ã³ã°ã®è¡šé¢åœ¢æ ç¹åŸŽèªèã«åºã¥ãç»ååŒ·åææ³ãææ¡ããŸããããã®ææ³ã¯ã次ã®3ã€ã®ã¹ããããããªããŸãïŒããŒã©ã¹èŒªéã®åŒ·åãšç»åã®ãã€ãºé€å»ãããŒã©ã¹ã®åé€ãšã¯ã©ãã¯ä¿®åŸ©ããããŠã¯ã©ãã¯ã®æ€åºãšé·ãã®èšç®ã§ããããã«ãããç±éå£ã³ãŒãã£ã³ã°äžã®ã¯ã©ãã¯ãæ£ç¢ºã«èå¥ããããšãã§ããŸãããŸããç»åãã£ã«ã¿ãªã³ã°ãæ°ç圢æ åŠãªã©ã®åŒ·åææ³ãé©åã«äœ¿çšããããšã§ãç±éå£ã³ãŒãã£ã³ã°äžã®ã¯ã©ãã¯ã®èå¥ã®å®å šæ§ãé«ãŸããåå·®ãå°ãªããªããŸããææ¡ãããææ³ã¯ãç±éå£ã³ãŒãã£ã³ã°äžã®ã¯ã©ãã¯ãèªåçã«èå¥ããã¯ã©ãã¯ã®é·ããèšç®ããããšãã§ããŸãã人æã«ããæ€åºãšæ¯èŒããŠããã®ææ³ã¯ã¯ã©ãã¯ã®èå¥ãããæ£ç¢ºã§ãããã¯ã©ãã¯ã®é·ãã®èšç®é床ãéããªããŸããããã«ãããææç§åŠã®ç ç©¶è ãç±éå£ã³ãŒãã£ã³ã°ã®åŸ®çްæ§é ã广çã«åæããã®ãæ¯æŽããããšãã§ããŸãã
-
ç±éå£ã³ãŒãã£ã³ã°ã®è¡šé¢åœ¢æ ç¹åŸŽãèªèããããã®2ã€ã®ãœãããŠã§ã¢ãèšèšããŸããã1ã€ã®ãœãããŠã§ã¢ã¯ãç±éå£ã³ãŒãã£ã³ã°ã®ç»å匷åãšã¯ã©ãã¯ã®ã¹ã±ã«ãã³æœåºãå®çŸãããã1ã€ã®ãœãããŠã§ã¢ã¯ã¯ã©ãã¯ã®èå¥ãšé·ãã®èšç®ãå®çŸããŸããããã2ã€ã®ãœãããŠã§ã¢ãçµã¿åãããŠäœ¿çšããããšã§ãç±éå£ã³ãŒãã£ã³ã°ã®åŸ®çްæ§é åæã®é床ãããã«åäžããæéãšäººçã³ã¹ããåæžãããŸãããŸãããã®ãœãããŠã§ã¢ã¯ç±éå£ã³ãŒãã£ã³ã°ã®ç»åãšé¡äŒŒããä»ã®ææã®ç»åãåŠçããããšãã§ããææç§åŠã®ç ç©¶ãšéçºãä¿é²ããŸãã
-
ææç»åããŒã¿æ¡åŒµã®ããã®æ¹è¯ãããHP-VAE-GANã®ææ¡ãè¡ããŸãããæ¹è¯ãããHP-VAE-GANã¯ãCBAMïŒConvolutional Block Attention ModuleïŒã¡ã«ããºã ã䜿çšããŠç¹åŸŽãããã³ã°ã现åãããããã¯ãŒã¯ã®ç¹åŸŽè¡šçŸèœåãåäžãããŸããåæã«ããšã³ã³ãŒããŒãããã¯ãŒã¯ã«1ã€ã®ç³ã¿èŸŒã¿ãããã¯ã远å ããŠããããã¯ãŒã¯ã®ç¹åŸŽæœåºèœåãããã«åäžãããCBAMã®æ¿å ¥äœçœ®ãã¢ãã«ã®æ§èœã«äžãã圱é¿ãæé€ããŸãããçæçµæã¯ãCBAM泚æã¡ã«ããºã ãçµã¿åãããææ¡ãããHP-VAE-GANãçæç»åã®å質ã广çã«åäžãããããšã瀺ããŠããŸããåé¡å®éšã®çµæãããããã®ææ³ã¯HP-VAE-GANã䜿çšããããŒã¿æ¡åŒµææ³ãããåªããçµæã瀺ããå°æ°ã®ææç»åããŒã¿ã»ããã«å¯ŸããŠæ°ããªããŒã¿æ¡åŒµã®ææ³ãæäŸããŸãã
忥åŸãåå®è¹ããã¯äžæµ·æ¯è¯è·æ¥åŠæ ¡ã§äººå·¥ç¥èœå°éã®æåž«ãšããŠåããŠããŸããåå®è¹ããã¯äžæµ·å€§åŠã§ã®3幎éã®ä¿®å£«èª²çšã§åªåããå°éç¥èãšç ç©¶èœåãåäžãããããã«åªããŸãããå€ãã®åªããæåž«ãå人ã«åºäŒãããšãã§ããŸãããåå®è¹ããã«ã¯ãå°æ¥ã®éã®ãã§åå¿ãå¿ããã䜿åœãå¿ã«å»ã¿ãå°é£ãä¹ãè¶ããŠåé²ããããšãé¡ã£ãŠããŸãã
è«æãžã®ãªã³ã¯ïŒResearch on Enhancement Methods for Small Sample Material Images
å€éŠæ¡Šããã¯ãæ±èç§æå€§åŠã§åŠå£«èª²çšãä¿®äºãã2020幎ã«äžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿å·¥åŠç§åŠåŠé¢ã§å°éã®ä¿®å£«ç ç©¶çã³ãŒã¹ã«é²åŠããŸãããå€éŠæ¡Šããã¯éè¶èå çã«åž«äºããæææç®æ å ±ã®ãã€ãã³ã°æ¹æ³ã«ã€ããŠç ç©¶ããŸãããéå çã®ç±å¿ãªæå°ã®ããšã以äžã®ç ç©¶ãéè¡ããŸããïŒ
-
æ°å€ã°ã©ãæ å ±ã®æœåºãæ°å€ã°ã©ããšå¯Ÿå¿ãããã£ãã·ã§ã³ãçµã¿åãããŠãæç®ãã€ãã³ã°ã®ããã®ç»åãšããã¹ãã®çµ±åææ³ãææ¡ããŸããããã®ææ³ã§ã¯ãŸããYolov5sã䜿çšããŠç§åŠæç®ããåäžã®æ°å€ã°ã©ãç»åãåãåºããæ¹è¯ãããç§åŠæç®ç»åæ€åºææ³ãé©çšããŠç²ŸåºŠãåäžãããŸããæ¬¡ã«ãPDFminerããŒã«ã䜿çšããŠç§åŠæç®ã®ããã¹ãã³ã³ãã³ããè§£æããŸãããããŠãæã®éã®ã³ãµã€ã³é¡äŒŒåºŠãšJaccardé¡äŒŒåºŠãèšç®ããæ°å€ã°ã©ãã«å¯Ÿå¿ãããã£ãã·ã§ã³ããã¹ãããããã³ã°ããŸããããã«ãSci-Bertã¢ãã«ãšCRFã¢ã«ãŽãªãºã ã䜿çšããŠãã¿ã€ãã«ãã軞ã®ååãèå¥ããŸããããã«ã圢æ åŠçæäœãæåèªèãªã©ã®æè¡ã䜿çšããŠãæ°å€ã°ã©ãããå ·äœçãªããŒã¿æ å ±ãæœåºããŸããæåŸã«ãæœåºããã軞ã®ååãšããŒã¿ãçµ±åããŠå®å šãªæ°å€ã°ã©ãæ å ±ãååŸããŸãã
-
äžèšã®æ°å€ã°ã©ãã®è»žåèå¥ã¿ã¹ã¯ã«ãããã¢ãã«ã®èªè粟床ã®äœãã«å¯ŸåŠãããããæ¬è«æã§ã¯ç§åŠæç®ã®æ°å€ã°ã©ãç»åãšããã¹ãã®é¢ä¿ã«çç®ããèå¥å¹æãåäžãããææ³ãææ¡ããŸããããã®ææ³ã§ã¯ããŸãæ°å€ã°ã©ãäžã®ã©ãã«ããã¹ããèå¥ãããµã³ãã«ãã³ãã¬ãŒãã«åã蟌ãã§ã¢ãããŒã·ã§ã³äžèŠã®ããã¹ãããŒã¿ãçæããããŒã¿æ¡åŒµã®å¹æãåŸãŸããåæã«ãããã¹ãã®é¡äŒŒåºŠãããã³ã°æè¡ã䜿çšããŠç§åŠæç®ã®æ¬æéšåããæ°å€ã°ã©ãã®èª¬ææãæ¢ãããããã¿ã€ãã«ããã¹ããšçµåããŠããã¹ãã®æ¡åŒµãè¡ããŸããããã«ãããæèã®é¢é£æ§ã«åºã¥ããŠå ¥åæã®ãã¯ãã«è¡šçŸãæ¹åããã¢ãã«ã®äºæž¬æ§èœãæé©åããŸãã
å€éŠæ¡Šããã¯åæ¥åŸãæå·åºç«ãã€ã¯ããšã¬ã¯ãããã¯ã¹ç€Ÿã§ãœãããŠã§ã¢éçºé¢é£ã®ä»äºã«æºãããŸããå€éŠæ¡Šããã¯äžæµ·å€§åŠã§ã®3幎éã®ä¿®å£«èª²çšã§åªåããå°éç¥èãšç ç©¶çºè¡šèœåãåäžãããããã«åªããŸãããå€ãã®åªããæåž«ãå人ã«åºäŒãããšãã§ããŸãããå€éŠæ¡Šããã«ã¯ãå°æ¥ã®éã®ãã§åå¿ãå¿ããã䜿åœãå¿ã«å»ã¿ãå°é£ãä¹ãè¶ããŠåé²ããããšãé¡ã£ãŠããŸãã
è«æãžã®ãªã³ã¯ïŒResearch on Context-Aware Information Mining of Image and Text in Material Science Literature
ç§ãã¡ã®ããŒã ã¯åœéèªãMaterials Today CommunicationsãïŒIFïŒ3.662ïŒã«ãŠãGraph Attentionã«åºã¥ãæææ§é ã»ã°ã¡ã³ããŒã·ã§ã³ææ³ããšããè«æããªã³ã©ã€ã³ã§çºè¡šããŸããããã®è«æã§ã¯ãäžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿å·¥åŠã»ç§åŠåŠé¢ãç¬¬äžæ©é¢ãšãªããé³äŸšå·æ°ã第äžèè ãéæ å§æ°ã第äºèè ãéè¶å Žåææãéä¿¡èè ãšãªã£ãŠããŸãã
å€åŠç§ã®çºå±ãšèåã«ãããã³ã³ãã¥ãŒã¿ããžã§ã³ãšææç§åŠã®èåã¯ãåŸæ¥ã®ææç ç©¶æ¹æ³ã«å€§ããªå€é©ããããããŸãããæ¢åã®ææ³ã¯ç¹å®ã®ã·ãŒã³ã®ç»åã广çã«ã»ã°ã¡ã³ããŒã·ã§ã³ã§ããŸãããææã®ç»åãæ£ç¢ºã«ã»ã°ã¡ã³ããŒã·ã§ã³ããã³åæããããã®æ±çšçãªææ³ã¯ååšããŸããã§ãããææç»åã®è€éãªãã¯ã¹ãã£ããŒãããå¢çãäœãã³ã³ãã©ã¹ããšãã£ãåé¡ã«å¯ŸåŠãããããæã ã¯å€æ¬¡å ç¹åŸŽã®çµ±åã«äŸåããææ³ãææ¡ããŸããããã®ææ³ã¯ãæéã§å©çšå¯èœãªæ³šéãµã³ãã«ããã广çã«ãããã¯ãŒã¯ãèšç·Žããããã®æ§ç¯ãããŠããŸãããã®ã¢ãŒããã¯ãã£ã¯ããšã³ã³ãŒããã°ã©ã泚æã¢ãžã¥ãŒã«ãå€ã¹ã±ãŒã«ç¹åŸŽçµ±åã¢ãžã¥ãŒã«ãããã³ãã³ãŒãããæ§æãããŠããŸããæã ã¯ããã®ãããªãããã¯ãŒã¯ãç»åã«å¯ŸããŠãšã³ãããŒãšã³ãã§ãã¬ãŒãã³ã°ã§ããããšã瀺ããŸãããé»åé¡åŸ®é¡ç»åã§ã¯ãæã ã®ã»ã°ã¡ã³ããŒã·ã§ã³çµæã以åã®å€ãã®å é²çãªææ³ãããåªããŠããããšã瀺ããŸããããã®ææ³ãçšããããšã§ãææç»åäžã®è€æ°ã®æ§é ãæ£ç¢ºã«èå¥ããããšãã§ããææç§åŠã«ãããæ§é å€æã®æ°ããªã¡ã«ããºã ã®å€æ®µéã»ã°ã¡ã³ããŒã·ã§ã³ãæ¢çŽ¢ã«éèŠãªç€ºåãäžããããšãã§ããŸãã
è«æãžã®ãªã³ã¯ïŒMaterial structure segmentation method based on graph attention
æç¿ç¥ºããã¯ãäžæµ·å€§åŠã§åŠå£«èª²çšãä¿®äºãã2020幎ã«äžæµ·å€§åŠã®ã³ã³ãã¥ãŒã¿å·¥åŠç§åŠåŠé¢ã§åŠè¡åã®ä¿®å£«ç ç©¶çã³ãŒã¹ã«é²åŠããŸãããæç¿ç¥ºããã¯åŠéšã®æçµåŠå¹Žããéè¶èç ç©¶ã°ã«ãŒãã«åå ããææç»ååŠçæè¡ãšãã®å¿çšã«é¢ããç ç©¶ãåŠã³ãŸãããéå çã®ç±å¿ãªæå°ã®ããšã以äžã®ç ç©¶ãç¶ç¶ã»æšé²ããŸããïŒ
-
èæ± 垯ãã¿ãŒã³ã®èªåæ€åºãçµæ¶ã®æ§é ãšååæ å ±ã¯ãEBSDïŒé»åè颿£ä¹±åæïŒãã¿ãŒã³ã®åæã«ãã£ãŠåŸãããšãã§ããŸãããããã®ãã¿ãŒã³ã¯EBSDè£ çœ®ã«ãã£ãŠååŸãããŸããåŸãããæ å ±ã®ä¿¡é Œæ§ãšæ£ç¢ºæ§ã¯ãEBSDãã¿ãŒã³ã®ã¹ãã©ã€ããšäº€ç¹ã®äœçœ®ã«äŸåããŸãããã®ç ç©¶ã§ã¯ãRadon倿ãšçޝç©ç¢ºçãã倿ãçµã¿åãããææ³ãææ¡ããEBSDãã¿ãŒã³ïŒèæ± åž¯ïŒããã³äº€ç¹ã®äœçœ®ãèªåçã«ååŸããããšãå®çŸããŸãããå®éšçµæã¯ããã®ææ³ãé å¥ã§ãããããæ£ç¢ºãªèæ± åž¯ãšäº€ç¹ãæ€åºã§ããããšã瀺ããŠããŸãã
-
ææç»åã®ã»ã°ã¡ã³ããŒã·ã§ã³ã¿ã¹ã¯ã«ãããæ³šéã³ã¹ããšã»ã°ã¡ã³ããŒã·ã§ã³ç²ŸåºŠã®ãã©ã³ã¹ã®åé¡ã解決ããããã«ããªã¢ã«ã¿ã€ã ã§ã»ã°ã¡ã³ããŒã·ã§ã³ã¢ãã«ãååŸããããã®ã察話åã®æç¶ãçæ³šéãšæ©æ¢°åŠç¿ã«åºã¥ãææç»åã®ã»ã°ã¡ã³ããŒã·ã§ã³ã¢ã«ãŽãªãºã ãèšèšããŸããããã®ææ³ã§ã¯ãã»ã°ã¡ã³ããŒã·ã§ã³ã¢ãã«ã®ãªã¢ã«ã¿ã€ã ååŸãæåªå ç®æšãšããææç»åã®äžå¿ç¹è¿åã®ç¹åŸŽãæœåºããè€æ°ã®ã©ãŠã³ãã®å¯Ÿè©±åã®æç¶ãçæ³šéãè¡ããã€ã³ã¯ãªã¡ã³ã¿ã«åŠç¿ã®ææ³ã䜿çšããŠæçµçãªç»åã»ã°ã¡ã³ããŒã·ã§ã³ã¢ãã«ãèšç·ŽããŸãã
-
æéãã€å®¹æã«å ¥æå¯èœãªæ³šéããŒã¿ã«åºã¥ããŠé«ç²ŸåºŠãªã»ã°ã¡ã³ããŒã·ã§ã³ã¢ãã«ãå®çŸããããã«ãæ¬äŒŒã©ãã«ãçšãã匱ç£ç£æ·±å±€åŠç¿ã«åºã¥ãææç»åã»ã°ã¡ã³ããŒã·ã§ã³ææ³ãèšèšããŸããããã®ææ³ã§ã¯ãæéãªæ³šéããŒã¿ã«åºã¥ããŠæé©ãªã»ã°ã¡ã³ããŒã·ã§ã³çµæãåŸãããšãç®æšãšããæ°ãããã¥ã¢ã«ãã©ã³ããããã¯ãŒã¯æ§é ãææ¡ããæ°ããã³ã³ããã¹ãç¹åŸŽå·®ç£ç£æå€±ãå°å ¥ããŠæ¬äŒŒã©ãã«ãçæããŸããããã«ãããã¢ãã«ã¯æãããã¢ãããŒã·ã§ã³ã®ã¿ã䜿çšããŠãé«ãã»ã°ã¡ã³ããŒã·ã§ã³ç²ŸåºŠãéæããããšãã§ããŸãããã®ææ³ã¯ãææç»åã»ã°ã¡ã³ããŒã·ã§ã³ã¿ã¹ã¯ã«ãããŠããã£ãŒãã©ãŒãã³ã°ãã¥ãŒã©ã«ãããã¯ãŒã¯ãçŽé¢ããå°éã®ããŒã¿ãé£ããã¢ãããŒã·ã§ã³ãããã³ãã¹ãããã»ã¹ã§ã®ãªãœãŒã¹ã®æµªè²»ãšããåé¡ã解決ããŸãã
-
çžå€ããã倿 ã®éãæ§è³ªãšè€éãªåœ¢æ ã®ã©ã¹ããã³ãµã€ãã®ããããã«ãã³ãµã€ãç»åè§£æã«åºã¥ãåŸæ¥ã®ç ç©¶ã¯ãçžå€æ ããã»ã¹äžã®ååãªæ å ±ãæäŸããããšãã§ããŸãããæ¬ç ç©¶ã§ã¯ãã©ã¹ããã³ãµã€ãã®å€æãæããåç»ããæ å ±ããŒã¿ãæœåºã»åæããæ°ãããããªåŠçæ¹æ³ãææ¡ããŠããŸããç»åããŒã¿ã®åæã«ãããã©ã¹ããã³ãµã€ãå€æã®æ°ãæå€§é·ãæå€§å¹ ãå¹³åé·ãå¹³åå¹ ãé¢ç©ãã«ããŽãªæ¹åãªã©ãã©ã¹ããã³ãµã€ã倿ã«é¢ãããã€ãããã¯ãªæ å ±ãæäŸããŸãããã®ç ç©¶ã¯ã鿢ç»åã«åºã¥ãããã«ãã³ãµã€ãã®ç ç©¶ã®éçãæç Žãããã«ãã³ãµã€ãã®ãã€ãããã¯ãªå€æã«é¢ããæ§ã ãªããŒã¿ãšæ å ±ãå æ¬çã«èª¬æããŸãã
忥åŸãæç¿ç¥ºããã¯ãªãšã³ã€ã¡ãŒãžã€ã³ããªãžã§ã³ãã«ãããŠãœãããŠã§ã¢éçºé¢é£ã®æ¥åã«åŸäºããããšã«ãªããŸãããäžæµ·å€§åŠã§ã®3幎éã®å€§åŠé¢ç掻ã§ãæç¿ç¥ºããã¯äžçæžåœå匷ããå°éç¥èãšç ç©¶çºè¡šã®èœåãåäžãããŠããŸããããŸããå€ãã®åªããåž«å ãå人ãšã®åºäŒããåŸãããšãã§ããŸãããæç¿ç¥ºããã«ã¯ãå°æ¥ã®éã«ãããŠåå¿ãå¿ããã䜿åœãå¿ã«å»ã¿ãå°é£ãä¹ãè¶ããŠåé²ããããšãé¡ã£ãŠããŸãã
äžæµ·å€§åŠã忥ããç ç©¶çã®éæ å§ããã匵å®å€ãããæ¥ç ããã¯3æ18æ¥ã«æ¯æ ¡ã«æ»ãããã€ãŠã®ãã£ã³ãã¹ã©ã€ããæ¯ãè¿ãããã€ãŠã®æå°æå¡ã§ããéè¶å Žå çãšå€ãã®äº€æµãããŸããã圌ãã®åž°æ ¡æ è¡ã§ã¯ã圌ãã®ä»äºãçæŽ»ã§ã®çµéšãšææ³ãå ±æããæ¯æ ¡ãžã®æ·±ãææ ãšææ ã衚çŸããŸãããæ°äººã®åçªçãåŠæ ¡ã«æ»ããšãææ šæ·±ãæãã«é§ãããŸããããã«æ»ã£ãŠãããšã圌ãã¯èªå® ã«åž°ã£ãŠãããããªæèŠãæ±ããŸãããã®ãã£ã³ãã¹ã¯åœŒãã®æé·ãšå€åãèŠå®ãããã¹ãŠã圌ãã«æè¬ãšå°éã®æ°æã¡ãæ±ãããŸãã ãã€ãŠã®æå°æå¡ã§ããéå çãšã®äº€æµã®äžã§ã3人ã®ç ç©¶çã¯ä»äºãçæŽ»ã§ã®çµéšãšææ³ãå ±æããŸããã圌ãã¯å€§åп代ã®åŠã³ãšç掻ã圌ããããèªä¿¡ãæã¡ãç¬ç«å¿ãé€ããè·æ¥ç掻ã®å åºãªåºç€ãç¯ãããšèããŠããŸããåæã«ã圌ãã¯æå°æå¡ãžã®æè¬ãšå°æ¬ã®æã衚ããæå°ãšå©ãã圌ãã®æé·ãšçºå±ã«ãããŠäžå¯æ¬ ãªåœ¹å²ãæããããšèªèããŠããŸãã ãã®åž°æ ¡æ è¡ã«ããã3人ã®ç ç©¶çã¯æ¯æ ¡ã®é åãšäœ¿åœãåã³æããæ¯æ ¡ã®çºå±ãšé²æ©ãããäžå±€å€§åã«ããæ³šç®ããŠããŸãã圌ãã¯ã©ãã«èº«ã眮ããŠããŠããåžžã«æ¯æ ¡ã®çºå±ãšé²æ©ã«æ³šç®ãããµããŒããç¶ããåŠæ ¡ãšç€ŸäŒãžã®è²¢ç®ãæããããšãçŽæããŠããŸãã


