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A B S T R A C T   

Since the rapid development of computer vision relies heavily on large-scale labeled data and high-performance 
computing equipment, therefore, image recognition in small sample datasets faces several challenges, such as 
difficult to implement model training. In the field of materials research, the cost of collecting image data is 
relatively high. In order to solve the problem of insufficient image samples in material research, an improved HP- 
VAE-GAN is proposed to generate material images to achieve data augmentation. HP-VAE-GAN is a single sample 
generation model that consists of Patch-VAE and Patch-GAN. The improved HP-VAE-GAN introduces the 
attention mechanism into model. By adding CBAM (Convolutional Block Attention Module) to the encoder of 
Patch-VAE, the feature extraction and representation capabilities of the network are further improved. Use this 
model to train a single image, and then generate a certain number of samples to achieve the expansion of the 
training set. For the classification of ultrahigh carbon steel microstructure images, experiments show that the 
accuracy of classification model (MobileNet, ResNet50 and VGG16) trained with real images plus generated 
images is improved obviously. In addition, the effectiveness of the improved HP-VAE-GAN is verified by ex-
periments on texture images similar to material images.   

1. Introduction 

In the past few years, machine learning has been widely used in 
various interdisciplinary fields, such as material informatics, and has 
achieved some excellent results. Material informatics emphasizes the 
cross-study of the composition, structure, process, and performance of 
material. With the deepening of study, material data plays an increas-
ingly crucial role in material science, and material images become the 
driving force for materials research [1]. Generally, machine learning 
models usually need to be trained on plenty of data to achieve high 
accuracy, while deep learning models also require a large number of 
training samples. However, in the specific field of material informatics, 
there is a small sample dilemma. Due to the limitations of collection 
cost, privacy protection, confidentiality scope, etc., high-quality images 
are lacking in material research. Thus, it is difficult to build reliable 
machine learning models or deep learning models. 

While the datasets in some computer vision tasks have few samples, 
if some annotated data are added to the original dataset, we can use the 
extended dataset to assist the model learning for the target task. Image 
data augmentation [2,3] is just such an effective method. This approach 

can be classified into image-based augmentation and feature-based 
augmentation. There are many other image augmentation methods be-
sides the traditional methods of color or geometric transformation of 
images. A particularly popular method is to use GAN (Generative 
Adversarial Networks) [4] for image generation. GAN is also used in 
many fields, such as image generation, style transfer, and image super- 
resolution reconstruction [5]. Image generation using GAN requires a 
large amount of data to train the model. Since the essence of GAN is to fit 
the distribution of real data, GAN cannot achieve the expected results for 
datasets with small samples. The quality of images generated based on 
poor data distribution is not high. VAE (Variational Autoencoder) [6], 
another generative model based on a self-coding structure, also has 
similar problems. Training the VAE model also requires a large amount 
of training data. Images generated using VAE are usually blurry. In the 
field of material research, material microscopic images generally have 
complex textures. Blurred images generated by VAE with low resolution 
are generally not acceptable because a lot of texture information is lost 
in these images. While the methods based on feature level such as 
SMOTE [7], SamplePairing [8], and Mixup [9] all tried to continuum the 
discrete sample to fit the real sample distribution. However, the added 
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samples from these methods are still located in the region enclosed by 
the original sample points in the feature space. It might be better to 
extend the data beyond this region. For the recognition of small sample 
images in material research, it is difficult to obtain satisfactory results by 
augmenting the image in the feature space. 

In order to accurately identify material images when samples are 
scarce, we propose to augment the training set of material images with 
images generated using the modified HP-VAE-GAN. Unlike multiple 
sample generative models, the training data of HP-VAE-GAN consists of 
only a single image, so it does not require a large number of training 
samples. The improved HP-VAE-GAN adds CBAM (Convolutional Block 
Attention Module) [11] to the encoder, which improves the quality of 
the generated images after model training. The feature maps output by 
CBAM will get attention weights in both channel and space dimension, 
which makes the connections between each feature more closely in both 
channel and space. The feature representation capability of the network 
is enhanced and the resulting feature maps are finer, which also makes 
the generated images of higher quality. 

The main contributions of this work are summarized as follows:  

i. The HP-VAE-GAN model is improved. By adding CBAM to the 
model, the network is able to not only learn the multi-scale fea-
tures of the image, but also introduce feature information in both 
channel and space domain. It enhances the feature representation 
capability of the network and elevates the effectiveness of the 
generative model.  

ii. We use only a single sample for training, avoiding the problem 
that the common multi-sample generative models are difficult to 
fit the real data distribution due to the scarcity of images. 

iii. We provide a new data expansion scheme for small sample ma-
terial images and avoids the overfitting problem of model 
training in classification tasks. Table 2 in Section 4.2 shows the 
classification results on subsets of UHCSDB. After data augmen-
tation with generated images, the top-1 accuracy on the test set 
reaches 95% at the highest. 

2. Related work 

Data Augmentation in the Material Image Material microstructure 
image is a kind of texture image. Due to the influence of temperature and 
different conditions in the thermal processing of materials, the number 
and shape of crystals in the material microstructure image are highly 
diverse, and the textures in the image are complicated. This also makes 
the study of material microscopic images stay in the research phase of 
observation comparison and artificial statistical analysis. However, the 
development of materials informatics has changed this situation. The 
study of material images involves a lot of image processing, and com-
puter vision is an indispensable technology for processing material 
microscopic images. As with other images, some traditional methods 
such as geometric transformation or color transformation can be used to 
augment the material image. Image geometric transformations, 
including flip, rotation, cropping, deformation, scaling, and other op-
erations. Geometric transformation does not alter the content of the 
image, it merely selects a portion of the image or redistributes the pixels. 
Transforming the color space of an image, or adding noise, blurring, 
random erasing [33], pixel padding, and so on can change the content of 
the image. For material image datasets with few samples, the use of the 
above methods has minor effects. Wang et al. [12], when studying the 
influence of spraying power on YSZ spatter morphology and micro-
structure of thermal barrier coating, proposed a method using machine 
vision to automatically identify the lamella in thermal barrier coating 
and calculate their morphological characteristic parameters. This 
method converts the color space of the image and uses the median filter 
to process the image. However, this method can only detect the same 
class of lamellar images and does not solve the problem of small samples. 
Ma et al. [13] proposed a data augmentation strategy based on style 

transfer, which fused simulated images and real images to create com-
posite images and solved the problem of insufficient training data in 
material microscopic image segmentation. In contrast to our aims and 
methods, these works all address problems in their respective fields, but 
do not greatly help in the task of generating microscopic images of small 
samples of materials. 

Images Generative Models In computer vision, images generative 
model is a significant research direction. Since GAN and VAE were 
proposed, they have been improved and applied in various fields. The 
improved GAN models, such as DCGAN [14], BigGAN [15], and ProGAN 
[16], either solve the problem of GAN training instability to some extent 
or further improve the quality of generated images. The improved VAE 
models, such as LogCosh-VAE [17], BNVAE [18], and WAE [19], focus 
on solving the problems of image blurring or posterior collapse. There 
are also some works that combine GAN and VAE, such as AAE [20], VAE- 
GAN [21]. AAE replaces the KL divergence of the posterior distribution 
in VAE with an adversarial network. The model is trained without rep-
arameterization and performs better than VAE. VAE-GAN jointly trains 
VAE and GAN and uses a discriminator to measure the similarity of 
samples, so as to improve the effect of the generative model. However, 
these improved models rely on a large number of training samples to 
obtain better generation results. Therefore, single-sample generation is 
gradually gaining the attention of researchers. Among various single 
sample generative models, SinGAN [22] can create new object shapes 
and structures based on preserving the original image patch distribution. 
ConSinGAN [23] can better maintain the global structure of the image 
and produce more diverse images than SinGAN. HP-VAE-GAN [10] in-
troduces Patch-VAE [26] and Patch-GAN [34,35] to further generate 
higher-quality samples. On the one hand, Patch-VAE makes the gener-
ated samples have high diversity, and on the other hand, Patch-GAN 
ensures that the generated samples have finer textures. For material 
images with very complex textures, the samples generated by HP-VAE- 
GAN still have some imperfections, such as some textures or noise un-
related to the real image, which needs to be avoided in material image 
studies. 

Attention mechanisms in computer vision Attention mechanism 
can be categorized into channel attention, spatial attention, and mixed 
attention. Channel attention focuses on what features are significant, 
while spatial attention focuses on the location information of features. 
Attention modules such as SENet (Squeeze-and-Extinction Net) [24], 
ECA (Efficient Channel Attention) [25], and CBAM (Convolutional Block 
Attention Module) [11] can play a role in specific tasks. More commonly 
used attention modules are SENet or CBAM. CBAM combines spatial and 
channel attention. Overall, CBAM can achieve better results than SENet, 
which only focuses on channel attention. Fig. 1 illustrates the structure 
of CBAM: The channel attention module compresses the size of the input 
feature map F from C × H × W to C× 1× 1, and then performs element- 
wise multiplication between the obtained feature map and Fto obtain 
the feature map Fc. The spatial attention module compresses the size of 
the feature map Fc from C × H × W to 1× H× W, and then performs 
element-wise multiplication between the compressed feature map and Fc 
to obtain Fcs. The process of dimension compression is implemented by 
global max pooling and global average pooling. The AvgPool (Average 
Pooling) can effectively learn the range of the target object, and the 
MaxPool (Max Pooling) can obtain the critical information about the 
unique target characteristics. The combination of the two methods can 
infer a better attention map. More details about CBAM can be found in 
[11]. Our approach integrates CBAM into the model because CBAM can 
significantly improve the performance of the model with a small number 
of computations and parameters. Ablation experiments with different 
attention mechanisms in Section 4.3 also verify the correctness of this 
choice. 
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3. Hp-Vae-Gan with CBAM 

3.1. Architecture 

Fig. 2 shows the improved HP-VAE-GAN model [10], which contains 
N+1 generators, which are denoted as G0⋯⋯GN according to the 
generated results from rough to fine. The model learns the distribution 
of image patches at different scales from 0to N, and gradually generates 
images that are close to the true samples from coarse to fine and from 

low resolution to high resolution. For each scale n = 0, ⋯⋯, N, the 
training sample xis down-sampled to xn. Different from the original 
model, we added CBAM to the encoder of Patch-VAE [26] and added a 
convolutional block to the encoder. The specific structure is shown in 
Fig. 3. In Patch-VAE, input a single sample x0, x0 is cut into patches with 
the size of r*r. The sample x0 is fed to the encoder (CE) that contains 
CBAM and outputs a feature map CE(x0) of size H*W*C, where H,W,C 
represent the height, width and channel of the feature map respectively. 
And the number of the image patches ρj(j = 1⋯⋯T) is T = H*W. From 

Fig. 1. The Structure of CBAM.  

Fig. 2. Overall view of the Improved HP-VAE-GAN. Encoder containing CBAM in Patch-VAE is marked as CE.  
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the perspective of generative model, if the distribution of T patches can 
be easily fitted, then a great deal of new samples can be generated by 
directly sampling from this distribution. However, this distribution is 
difficult to fit directly. Therefore, the model learns from the theory of 
VAE, hopes to sample latent variable zj from the prior distribution 
P
(
zj
)
= N(0, I), and then reconstruct ρj from zj. When the VAE model is 

implemented, the posterior distribution P
(
zj|ρj

)
is assumed to be normal 

distribution, and the mean μj and variance σ2
j of P

(
zj|ρj

)
are obtained 

through the fitting of neural network. Then use the reparameterization 
trick to obtain z′

j = ∊σj + μj, ∊ N(0, I), so as to shift the sampling from 
N(μj, σ2

j ) to N(0, I). In order to align N(μj, σ2
j ) with the standard normal 

distribution, VAE does this by calculating the KL loss of both. The formal 
expression of the KL loss function is shown in equation (1). 

LKL(x) =
∑T

j=1
KL[N

(
μj, σ2

j

)⃒
⃒
⃒|N(0, I)] (1) 

The z′ in Fig. 2 is the reassembled z′

j obtained by sampling after 
reparameterization and has the same shape as the feature map CE(x0). z′

is input to G0 to get the image x0, and G0 is updated through the 
reconstruction loss of x0 and x0. The image obtained after upsampling x0 

is then fed into the generator G1. At this time, the output image of G1 is 
added with the upsampled x0 to obtain x1, and the reconstruction loss of 
x1 and x1 is calculated again to update encoder G1. Analogously, until xM 

is obtained through GM. The equation [10] is as follows: 

xn= ↑xn +Gn( ↑xn− 1) (2)  

where xn− 1 is the output of the previous scale, and ↑xn− 1 is the result of 
xn− 1 upsampling to scale n. Before the M scale, VAEs guarantee the di-
versity of the generated images, making them capable of generating 
samples with high diversity and not easy to fall into mode collapse. 
Starting from GM+1, we use a Patch-GAN for each scale, training a 
generator and a discriminator. The generator adds more detailed tex-
tures to samples to ensure the high quality of the generated samples. The 
discriminator is used to determine if the input is real or fake. When 
n > M, first sample z ∈ N(0, I) with the same shape as CE(x0), and then 
get xM according to equation (2). xM is fed to generator GM+1 after 
upsampling, and the output image by GM+1 is added with the upsampled 
xM to get xM+1. At the same time, the noise zM is input, and then it is 
added with the upsampled xM and sent to GM+1. The output image of 
GM+1 and the input image of GM+1 are added to obtain the sample xM+1

adv . 

Then xM+1
adv is sent to the discriminator DM+1. By calculating the 

adversarial loss Ladv and reconstruction loss LRecon, updating GM+1 and 
DM+1 until the generator GN outputs finer images. For n > M, two 
different outputs are computed during training. One is xn, which is ob-
tained using the recursion of Eq. (2). The other xn

rand is obtained using the 
following equation [10]: 

xn
rand =

⎧
⎪⎪⎨

⎪⎪⎩

↑xn− 1
rand + Gn( ↑xn− 1

rand + zn
)
n > M

↑xn− 1
rand + Gn( ↑xn− 1

rand

)
0 < n ≤ M

G0(z′)n = 0
(3)  

where zn is the random noise with the same dimension as ↑xn− 1
rand, and 

xn
rand is the randomly generated sample at scale n. The sample conforms 

to xn
rand = γxn + (1 − γ)xn

rand, where γ is uniformly sampled between 
0 and 1. z′ is the random noise sampled from the distribution after 
reparameterization. 

3.2. The structure of the improved Patch-Vae 

The encoder of HP-VAE-GAN contains three convolutional blocks, 
each of which consists of a Conv2d convolutional layer, a BN layer, and a 
Leaky_Relu activation function. The structure of the encoder in the 
modified Patch-VAE is shown in Fig. 3. We add a convolutional block to 
the original encoder and insert CBAM in the middle of the four con-
volutional blocks to augment the extracted features. The functions and 
parameters used in the network are also shown in Fig. 3. Conv2d is a 
convolutional operation used to extract different features of two- 
dimensional input data, where the kernel size is set to 3*3, and the 
stride is 1. BN (Batch Normalization) layer is used to avoid vanishing 
gradient. The activation function we choose is Leaky_Relu function with 
α = 0.2. 

The decoder still follows the structure of the decoder in HP-VAE-GAN 
with seven convolutional blocks. Each convolutional block uses the 
same functions and parameters as the encoder. The deepest and shal-
lowest convolutional block do not contain the BN layer and the Lea-
ky_Relu activation function. The specific decoder structure is shown in 
Fig. 4. 

3.3. Loss function 

We continue to follow the loss function of the original HP-VAE-GAN. 
When the scale 0 < n ≤ M, there is no discriminator. The encoder CE is 
updated by the reconstruction loss LRecon(xn, xn) of xn. The loss function 
under n scale is shown in equation (4) [10]. 

Fig. 3. The structure of improved Encoder. The red dotted line box shows the added CBAM module and convolutional block. The specific structure of CBAM is shown 
in Fig. 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Lvae
(
x0, xn, xn) = LRecon(xn, xn)+LRecon

(
x0, x0)+ βvaeLKL

(
x0) (4) 

The loss is only used to update encoder CE, generator G0 and Gn. The 
KL term in the loss function is only related to the encoder CE. Like 
β − VAE [41], the KL item also sets a balance factor βvae as a hyper-
parameter. After the discriminator is used, the loss consists of two parts: 
adversarial loss and reconstruction loss. The reconstruction loss is still 
LRecon(xn, xn). The loss Ladv(z, xn) of WGAN-GP is selected for the adver-
sarial loss, where z ∈ N(0, I). Refer to [27] for the specific content of 
WGAN-GP. Therefore, when n > M, the overall loss function is as 
follows: 

Ladv(z, xn, xn) = LRecon(xn, xn)+ βadvLadv(z, xn) (5) 

In Patch-GAN training, for n > M, only Gn and Dn were trained, CE 
and G0, … Gn− 1 was frozen. 

4. Experiment 

4.1. Datasets and Experimental setup 

Datasets The experiments are run on a subset of UHCSDB (Ultrahigh 
Carbon Steel micrograph DataBase) [28]. UHCSDB contains 961 SEM 
micrographs of UHCS (Ultrahigh Carbon Steel) with size 645*484 and 
consists of 5 categories: carbide network, pearlite, pearlite + spheroid, 
spheroid and martensite. We randomly selected 10 micrographs from 
each category for a total of 50 images, and the ratio of training set to test 
set is 8:2. The training set is used for image generation and classification 
model training, and the test set is used to evaluate the results of the 
classification task. In addition, we also selected several images from the 
Kylberg texture dataset [39] and STex-512 texture dataset [40] for 
generation to observe the effect of the model. 

Training details For reliable comparison experiments, we adopt the 
same training settings as HP-VAE-GAN, i.e., N = 9,M = 3, r = 11. All 
images in the dataset were trained using the original size, and the images 
were augmented by horizontal flipping. The model trains 5000 itera-
tions and Batch_size is 2, and the Adam optimizer with a learning rate of 
5*10− 4 is used on each scale. The improved encoder block in the model 
contains four convolutional blocks and a CBAM module, and the encoder 
has seven convolutional blocks. The specific parameter settings can be 
obtained from Fig. 3 and Fig. 4. We use HP-VAE-GAN as a baseline with 
which our improved model is compared. 

4.2. Results and analysis 

Qualitative analysis For the images in the subset of UHCSDB, we 
train the selected training samples one by one, and the number of 
generated samples for each real sample after training can be set manu-
ally. The second row of Fig. 5 shows several randomly chosen generated 
images. The results show that the steel microscopic images generated by 
the improved HP-VAE-GAN can clearly display various textures. While 
the original HP-VAE-GAN generate images with more imperfections, 
although the texture is also clear. In contrast, the samples generated by 
our improved model have fewer flaws. By observing the 20 generated 
images corresponding to each real image in Fig. 6, it can be found that 
the generated results do not exactly replicate the real image. Each 
generated image is different, but the style is the same as the real image. 
This indicates that the images generated with the modified HP-VAE- 
GAN are of high quality and diversity. 

Scatter plot is used to visualize the features of the real images and the 
generated image. We use the GLCM (Gray-level Co-occurrence Matrix) 
algorithm [29] to extract the features of the image, and then use Cor-
relation and Dissimilarity to represent. The x-axis and y-axis of the 

Fig. 4. The structure of Decoder.  

Fig. 5. Images generated after training the model with part of the images in the UHCSDB. The first row shows the real images used for training, the second row shows 
the images generated using our improved HP-VAE-GAN, and the third row shows the results using HP-VAE-GAN. The red box circles the flaws in the image. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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scatter plot represent the two features, respectively. Fig. 7 (a) shows the 
feature scatter plot of 40 real images. There are 5 categories of real 
images, and each category has 8 images. Fig. 7 (b), Fig. 7 (c), and Fig. 7 
(d) respectively show the feature scatter plot of 20, 100, and 500 images 
corresponding to a real image. It can be seen that when the number of 
generated samples is large, some samples will be shifted occasionally, 
but generally, the generated samples are mainly distributed around the 
real samples. 

In addition to generating steel microscopic images, we also selected 
one image from each of the four categories from the Kylberg dataset and 
the STex-512 dataset for the experiments. In the Kylberg dataset, four 
categories are selected: canvas, cushion, linseeds, and stone. In the STex- 
512 dataset, four categories are selected: bark, fabric, floor, and gravel. 
Fig. 8 and Fig. 9 show the experimental results using the improved 
model. The first row is the training samples, and the second row is the 
generated images. Clearly, the generated images are not simple copies of 
the real images. There are some differences between the two in texture 
details. The generated images have strong diversity while preserving 
authenticity. With the exception of the fabric, the colors of the other 
generated images are the same as those of their corresponding training 
samples. The results on different images also validate the effectiveness of 
the modified HP-VAE-GAN in image generation. 

Quantitative analysis Several commonly used metrics, such as 
Structural Similarity [36], Cosine Similarity [37], Histogram Distance, 
KL(Kullback-Leibler) Distance and JS(Jensen-Shannon) Distance, are 
used for quantitative analysis of the generated results. Structural Simi-
larity is an important indicator to evaluate the similarity between two 
images. It reflects the attributes of texture structure in the image, and its 
value range is [ − 1,1]. The larger the value of Structural Similarity, the 
higher the similarity between images. Cosine Similarity is calculated by 
computing the cosine distance between vectors to represent the simi-
larity of two images. The closer the value is to 1, the more similar the 
images are. Histogram Distance is a measure of similarity between his-
tograms of two images. Image histogram has rich image details and can 
reflect the probability distribution of image pixels [38]. Both the KL 
distance and JS distance are used to measure the difference between two 
probability distributions. JS distance is a variant of KL distance. The 
more similar two probability distributions are, the smaller KL distance 
and JS distance are. KL distance range is [0, + ∞], and JS distance range 
is [0,1]. Table 1 shows the score of image generation using the improved 
HP-VAE-GAN on the UHCSDB subset, and the scoring results of several 
metrics show that the proposed method is reliable. 

In addition to computing the aforementioned evaluation metrics, we 
also carry out classification experiments to verify whether augmenting 

Fig. 6. Each training sample corresponds to 20 generated images. The positions in the first column of the first row, the first column of the fourth row, and the first 
column of the seventh row are all training samples (real images). The remaining positions are generated images. 
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the training set with generated images can increase classification accu-
racy. The dataset is still a subset of the UHCSDB. In the generation and 
classification experiments, the division strategy of the dataset is as 
described in Section 4.1 above, namely, 40 images are used as the 
training set and 10 images are used as the test set. In the generation 
experiments, 40 images are trained in turn, and 20 samples of the same 

size as the real images are generated for each real image, thus the total 
number of generated samples is 800. For the classification experiments, 
40 images are used as the training set and 10 images are used as test set. 
Because the size of steel microscopic image is too large (645*484), we 
cut the real image from the middle part to the size of 448*448, and then 
cut it into 4 224*224 patches. The same process will be performed for 

Fig. 7. Scatter plot of real image features and generated image features. (a) is the scatter plot of 40 real images, and (b), (c) and (d) are the scatter plots of 800, 4000 
and 20,000 generated images, respectively. 

Fig. 8. Experimental results on Kylberg dataset. The first row is the real image for training, and the second row is the image generated using the improved HP- 
VAE-GAN. 
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the generated samples. Thus, there are 160 (40*4) samples in the 
training set before expansion, which is recorded as Train_A. The 
expanded training set adds 3200 (800*4) generated samples based on 
160 training samples, a total of 3360 samples, recorded as Train_ B. The 
test set, denoted Test_C, has 40 (10*4) samples. To avoid accidental 
results, three classification models, MobileNet [30], ResNet50 [31] and 
VGG16 [32], were selected for the experiment. The results in Table 2 
show that the Top-1 accuracy in the test set increases after training set 
augmentation using generated images, and the Top-1 accuracy with 
VGG16 as the classification model increases by 55%. This alleviates to 
some extent the problem of overfitting of deep learning models and 
underfitting of target tasks caused by too few training samples. The 
classification results also demonstrate that the modified HP-VAE-GAN is 
effective for material image augmentation. 

To eliminate the contingency of classification results caused by too 
few test samples, we add some test samples. The number of images in the 
test set was increased from 10 to 110. Similarly, we cut each test image 
into four 224*224patches, so that the new test set has 440 (110*4)
samples, and the new test set is denoted as Test_D. Table 3 shows the 
results after changing the test set. Clearly, the decrease in accuracy 
compared to the results on Test_C is due to the increase in the number of 

samples in the test set. Nonetheless, the augmented training set still 
improves the performance of the classification model compared to the 
training set without augmentation. 

4.3. Ablation experiment 

This paper mainly adds CBAM and a convolutional block to the 
encoder part of Patch-VAE in HP-VAE-GAN. In order to verify the 
effectiveness of CBAM and convolutional block on the network model, 
the ablation experiment is carried out. The dataset is still selected as a 
subset of UHCSDB. In the generation experiment and classification 
experiment, the partition strategy of the dataset is also as described 
above. In this experiment, the number of samples generated from one 
training image is set to 20. The training set of the classification experi-
ment is Train_B, and the test set was Test_C. Table 4 shows the classifi-
cation results of different models. Model A uses the original HP-VAE- 
GAN, model B combines CBAM on HP-VAE-GAN, and model C com-
bines CBAM and a convolutional block on HP-VAE-GAN. The experi-
mental results in Table 4 show that after adding CBAM and one 
convolutional block, HP-VAE-GAN has the most significant improve-
ment in Top-1 accuracy when using VGG-16 to carry out classification 
experiments, reaching 95%. On 40 test samples, only two samples were 

Fig. 9. Experimental results on STex-512 dataset. The first row is the real image for training, and the second row is the image generated using the improved HP- 
VAE-GAN. 

Table 1 
The score of metrics.   

Structural Similarity Cosine Similarity Histogram Distance KL Distance JS Distance 

carbide network  0.999899  0.954812  0.895759  0.068004  0.01548 
pearlite  0.999866  0.914536  0.552137  0.14235  0.029988 
pearlite + spheroidite  0.999823  0.89313  0.62904  0.160105  0.035283 
spheroidite  0.99981  0.963096  0.908656  0.041842  0.010241 
martensite  0.999875  0.861535  0.543671  0.235227  0.049621  

Table 2 
Classification results of different models (MobileNet, ResNet50, VGG16) on the 
test set.  

Training set Test set Top-1 Accuracy 

MobileNet ResNet50 VGG16 

Train_A Test_C 75% 72.5% 40% 
Train_B Test_C 82.5% 90% 95%  

Table 3 
Classification results of different models in Test_D.  

Training set Test set Top-1 Accuracy 

MobileNet ResNet50 VGG16 

Train_A Test_D  73.41% 67.05%  33.41% 
Train_B Test_D  81.36% 80%  77.95%  
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predicted incorrectly. The performance of model B with only CBAM is 
also improved. This also shows that it is feasible to modify the model 
using CBAM and convolutional blocks. 

4.4. Comparison with other attention mechanisms 

To compare the effects of different attention mechanisms on the 
model, this paper also made a comparative experiment of SENet, ECA-
Net, and CBAM. Table 5 displays the results of the comparative exper-
iment, and the dataset division strategy is also the same as that in 
Section 4.3. Model B combines CBAM based on HP-VAE-GAN, Model D 
combines SENet based on HP-VAE-GAN, and Model E combines ECANet 
based on HP-VAE-GAN. The insertion position of the attention module is 
the same, which is behind the second convolutional block of the 
encoder. The classification results of using VGG-16 in Table 5 show that 
the effect of adding CBAM is better than SENet or ECANet in HP-VAE- 
GAN, and the Top-1 accuracy is higher, reaching 92.5%. 

5. Conclusion 

In this paper, a method of material image augmentation using 
improved HP-VAE-GAN is proposed. The improved model uses CBAM to 
refine the feature maps, which enhances the feature representation 
capability. Meanwhile, a convolutional block is added to the encoder to 
enhance the feature extraction capability of the network. Experimental 
results show that the modified HP-VAE-GAN is able to generate high- 
quality images. The results of the classification experiments show that 
this approach achieves better results than using HP-VAE-GAN to 
augment the training set. 

Although some achievements have been made in this paper, the 
model needs further refinement. For example, there is some color 
inconsistency between the generated results and the training samples, 
which needs to be removed in the following work. Currently, the pro-
posed method is only applied to the classification of material images. In 
the future, this approach can be extended to the domain of material 
image segmentation. Moreover, while this paper focuses on material 
images, image generation for different datasets, such as medical images, 
can be considered later to address the small sample issue in these specific 
domains. 

6. Data availability 

The data and code used to support this study are available from the 
GitHub repository https://github.com/thinker-coder/Improved-HP- 
VAE-GAN. 
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